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1i Research Overview

The research vehicle for this contract is the largest possible computer that could be conceived for the mid
to late 191's. The technical challenges of such a machine serve as our guiding stimulus for the research
,'arrie, oiit and re'ported here

We ioo agin this machine to ocupy a 14-story building, to cost upward of S1 billion, and to be so
colossal itat the nation could only afforc one or two of them. The available chip technology and machine
size are consistent with 10'5 FLOPS and 10 5 bytes of memory. The machine will be used to solve
large-scale scientific problems having both military and civilian applications.

This investigation addresses the hardware technology, software techniques. algorithms, communica-
tions. processing elements, and applications. The study will determine the plausibility (not feasibility) of
the machine. Progress in these various areas are highlighted in the forthcoming sections.

2 Circuits

Sandy Wells and Tom Knight have designed and tested MSI torototypes of a new class of analog computing
devices. based on switched capacitor constraint boxes. The core of these devices is a two-port consisting
,:f a capacitor rapidly switched between the ports. Labelling the terminal voltages ab.c. d. this attempts
to enforce a constraint a - b = c - d. This is a reciprocal constraint, allowing propagation of information
in either direction. We have shown that. using this basic constraint box, we can solve linear systems (to

accd:jac,', .:,,g ,.. ,,aiog ':gital techniques), solve over-constrained systems with the pseudo-
inverse, and solve linear programming problems. The small size. simplicity, and -ase of understanding.
argue that this device may be an important circuit element in next-generation hybrid computing.

Srinivas Devadas and his students have been focusing on the optimization ofcomibinational and sequen-
tial circuits specified at the register-transfer or logic levels with area, using performance and testability of
the synthesized circuit as design parameters. Work is also being done in the area of test generation for
VLSI circuits.

Techniques have been proposed in the past for various types of finite state machine (FSM) decomposi-
tion that use the number of states or edges in the decomposed circuits as the cost function to be optimized.
These measures are not reflective of the true logic complexity of the decomp,.scd -*ccuits. These methods
have been mainly heuristic in nature and offer limited guarantees as to the quality of the decomposition.
In this work [32]. following up on our -xact state assignment algorithm developed earlier [31]. we have
,developed optimum and heuristic algorithms for the general decomposition of FSMs such that the sum
total of the number of product terms in the one-hot coded and logic minimized submachines is minimum
or minimal. This cost function is much more reflective of the area of an optimally state-assigned and
minimized submachine than the number of states/edges in the subtiachine.

We are continuing to investigate the impact of logic synthesis on the testability of sequential circuits
that can be modeled as finite state machines [33] [34] [37] [30]. The new approach of [34] and [37] is
o use synthesis to ensure the complete testability of a sequential circuit by ensuring that each invalid

.'tate has an uiperturbable distinguishing sequence. To accomplish this we have developed a Boolean
minimization procedure of prime implicant generation and constrained covering based on the Quine-
McCluskey algorithm that ensures that no single fault can both produce an invalid state and corrupt the
distinguishing sequence by which that invalid state can be identified. On completion. it guarantees a prime
and irredundant, fully testable Moore or Mealy finite state machine. Given a two-lcvel circuit with these
prope-rties we then define constrained algebraic factorization techniques that retain the invariant that no
single fault can both produce an invalid state and corrupt the distinguishing sequence by which that invalid
state is detected. We have used the notion of fault-effect disjointness to explore the landscape between
various syithesis approaches and have demon.'-a,'d as-' tr',m cfrtelhods r' 7 ,1 that place relativelj more-
()r-l]ss f-mphasis on either logic optimization or constrained synthesis. Techniques used in this exploration
include include fault simulation, Boolean covering, algebraic factorization and state assignment.

We have explored the relationships between redundant logic and don't care conditions in sequential
circuits [30]. Stuck-at faults in a sequential circuit may be testable in the combinational sense, but may
be redundant because they do riot alter the terminal behavior of a non-scan sequential machine. These
sequential redundahcies result in a faulty State Transition Graph (STG) that is equivalent to the STG of
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the true machine. We have precisely classified redundant faults in sequential circuits composed of single i
,)r interacting finite state machines. For each of the different classes of redundancies, we define don't care
-.ts whiiich ifoptilnall ,xplotd will result in the implicit elimination of any such redundancies in a given

,ir,-!lio
\%,1I h1%. :ti,) addressed the prohblei 4f geinerating test sequences for stuck-at faults iii non-scan svn-

',-lronis sP 1u,'ntial circuits L38. A novel test procedure that exploits both the structure of the combina-
ti,-nal logic in the circuit as well as the sequential behavior of the circuit has been developed. In contrast
to previous approachtis, we decompose the problem of sequential test generation into three subproblems
,,f combinational test generation, fault-free state justification and fault-free state differentiation. Initially,

Pri,-,r to test generation. separate sum-of-product representations of the complete or partial ON-sets and
)FF--;ets of -tch of the flip-flop inputs and primary outputs of the sequential circuit, are extracted using

the PODEM algorithin. Fast algorithms for state justification and state differentiation can be based on
Ihsreprosentation. fh.se algorithms perform repeated cube intersections in an effort to find ajustification

•s<equence for a state or a distinguishing sequence for a pair of states. I
vWe have addressed the problem of generating tests for delay faults in non-scan synchronous sequential

'ircuits '361. Delay test generation for sequential circuits is a considerably more difficult problem than
delay testing of combinational circuits and has received much less attention. We have developed a method
for generatinu test sequences to detect delay faults in sequential circuits using a stuck-at fault sequential
test generator The method is complete in that it will generate a delay test sequence for a targeted fault
given sufficient CPU time. if such a sequence exists. " e term faults for which no delay test sequence exists.
11mmder our test methodology, sequentially delay redundant. We have also developed means of eliminating I
sequential delay redundancies in logic circuits.

Finally, we have done some preliminary work in an attempt to gain insight into the nature of NP-
crplete problems. In (3.51. we have transformed various NP-complete problems in layout. namely two and
multi-layer dogleg channel routing, two-way partitioning, one-dimensional and two-dimensional placement
into Boolean satisfiability problems. The transformations are efficient in that the number of inputs to the
Boolean function for which we have to find a satisfying assignment, grows only linearly or quasi-linearly
with the layout problem size. We have applied sophisticated test generation and logic verificatiop strategies I
that can be used to check for Boolean function salisfiabihity to these layout problems. It appears that this

approach to layout optimization offers an elegant means of representing and searching the entire space of
feasible solutions in an attempt to optimize a complex cost function with associated constraints.

3 Processing Elements

Ihe processors of a multicomputer require the ability to switch tasks rapidly to hide transmission latency
without sacrificing single-thread performance. Peter Nuth and Bill Dally are working on an architecture
for a named state processor that achieves this goal by explicitly binding names to all processor registers 3
and interleaving tasks on a microycle basis. This mechanism combines the advantages of multi-threading
and multiple register sets for implementing fast context switches and procedure calls. It also provides a
general synchronization mechanism.

During the past year, we have defined the named state processor architecture and its interface to a U
multicomputer network. We are currently studying instruction scheduling policies (deciding which pro-
cessels instructions get advanced when) and context cache management policies (deciding which processes
state re ains in active storage). A simulator for the processor is under construction. This work is being
performed by Peter Nuth as his MIT Ph.D. thesis. I

Most multicomputers are specialized to execute a single model of computation (e.g., dataflow. actors
or shared memory). Scott. Wills and Bill Dally have identified a set of primitive mechanisms for com-
tuviniration, synchronization and naming that are required for all of these models of c.-mputation. We
are currentuy , iuating these mechanisms in terms of their implementation cost and their sui~ability for

supporting popular models of paralb,1 ,--mpwtation (51] [55].
During the reporting period, we have defined a parailel maciiuc irt rfae that incorporates a consistent I

set of these mechanisms. A parallel interface simulator. PiSIM, has been constructed to facilitate exper
irnifts with the interface. Vsing PiSIM, dataflow and shared memory models of computation have been
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I implemented on the parallel machine interface. We are presently evaluating the cost and performance of

I I'se imph. meit at ions.
..\iiant Aarwal has investigated the use of rapid-context switching VLSI RISC processors as the com-

liUti u nodes in a large parallel machine. Rapid context switching allows overlapping communication and
n,' hr,,nizat,, ,delays with computation by quickly schediiing a new process on the processor. The de-

sign of suclh a processor is complete. The processor, APRIL. switches between threads on either memory
accesses to remote nodes, or during an unsuccessful access of a synchronization object. APRIL has tag
support for Fut tres, and synchronization support in the form of full-empty bits associated with each mem-
ory word. APRI1 also has several basic instructions to allow experimentation with a variety of shared
memory progranmning models. These special operations include cache flushes, fences, block transfers.

1and iser definable choice of spin-waiting versus blocking. An instruction-level simulator for APRIL has
l en written. A Mul-T compiler for this processor has been written and generates code that runs on the
simulator. A scheduler that exploits the multithreaded nature of the processor and other run-time system
software has also been written and runs on the simulator. An implementation design consisting of very
minor modifications to the SPARC processor is almost complete. Because floating point operations are
usually supported through the use of coprocessors in most modern day VLSI RISC microprocessors, we are
investigating methods of multithreading a coprocessor. A performance evaluation of the system effects ofImultithreaded processors has also been completed [59]. The analytical evaluation considered the context
switching overhead, and the increased cache and network contention. We showed that for most system
,onti gurations. while providing for network, cache and overhead effects, between two and fou- contexts
w-r sufficient to provide clse to 90effects.

We are designing a scalable cache and nemory system. A detailed protocol design for a scalable cache
,,,h,rence schierue is complete and has been implemented in a simulator. A cache controller design is in
progress. A VLSI implementation of the same is envisaged in the near future. The architectural and
'I.SI circuit design of a fast and low-storage-overhead translation scheme for processor addresses is in

progress. Simulations of various cache coherence schemes such as limited directories, singly and doubly
linked lists and write-through shared, are in progress. Our simulations use traces from numeric FORTRAN
codes, graph algorithms written in Mul-T, and CAD applications written in C. (Our FORTRAN tr -s
were obtained through a joint effort with IBM T. J. Watson Research Center. The Mul-T traces were
obtained through a compiler-aided tracing package we wrote called T-Mul-T. We have made these traces
available to other researchers also. The CAD traces are from Stanford). Initial results indicate that
the performance of singly linked lists is comparable to doubly linked lists without the extra hardware
overhead and complexity. Limited directories are shown to perform comparably if software support for
widely-shared read-only objects and synchronization structures is provid -d. We wrote a novel post-mortem
scheduler that can take a single-processor execution of a parallel program and. simulating th, effect of
various synchronization implementations such as adaptive backoff [5] ot ,oftware b,-rrier trees, produceg cache statistics for the various synchronization implementations [39].

4 Communications Topology and Routing Algorithms

3 Bill [)ally and his students are experimenting with a new flow control strategy based virtual channels.
Our inital results show that this strategy can boost network throughput to 90% capacity without adaptive
routing by decoupling resource constraints. Current, flow control methods are limited to 30% to 50'/(
capacity because many channels remain idle due to resource allocation coupling. This throughput limit Is
not due to load imbalance, which can only be addressed by adaptive routing.

The virtual channel flow control method divides a channel's flit buffers into many shallow 'lanes', rather
than a single deep FIFO. The buffering is short and wide rather than long and fat. The organization
decouples flit buffer resource allocation for each channel This a!!ows active mrsages to pass blocked
messages that are waiting on an unrelated resource much in the way that a two lane street permits cars
travelling straight ahead to pass a car that is waiting to make a left. turn.

We have built simulator of direct and indirect networks that use virtual channel flow control and
hiav, measured their performance under different loads and traffic patterns. The initial results suggest that
a moder,. .. arunier of virtual channels (4-8) gives a throughput that is very close to network capacity.
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The remaining degradation is largely due to load imbalance and adaptive routing will be required to reach
10( capacity.

Express cubes are k-ary n-cube interconnection networks augmented by express channels that provide

a short path for non-local messages. An e).press cube combines the logarithmic diameter of an indirect I
ntwrk wit h the wire-efficiency ano ability to exploit locality of a direct network. The insertion of express
,haimels reduces the network diameter and thus the distance component of network latency. Wire length is
increased allowing networks to operate with latencies that approach the physical speed-of-light limitation I
rather than being limited by node delays. Express channels increase wire bisection in a manner that
allows the bisection to be controlled independent of the chnice of radix, dimension. and channel width.
By increasing wire bisection to saturate the available wiring media, through7I't can be substantially
increased. With an express cube both latency and throughput are wire-limited and within a small factor
of the physical limit on performance. Express channels may be inserted into existing interconnection
netwnrks using interczanqges. No changes to the local communication controllers are required.

Tom Knight an ,1 his students are continuing implementation work on the Transit communicamio,.
switch. We have released to manufacturing the design for the button board connector, and for the PC
board component carrier. The carrier cooiing technology has evolved somewhat since our last report
as a result of detailed heat flow calculations. Our current approach involves flowing coolant through a

microchannel heatsink bonded directly to the rear surface of the die, similar to the approach used by
Tuckerman at Stanford. but at a more macroscopic level.

Die design continues, with the gate-level description and stable test-patterns, and with initial sizing
and layout work under way. Initial RSIM estimates by Henry Minsky of timing (now at 17tns) indicate I
that ;ubstantial additional effort will be required to achieve our target of a 1Ons clock rate, but we remain

cautiously optimistic.
Recci,t design changes in the chip specification. adding a per-input-port "swallow" signal, allow the

use of this design in combination with some as-yet missing packaging technology to construct much larger
switching arrays based on Leiserson's fat-tree topology. Andre DeHon is actively pursuing the topological.
packaging. and electrical requirements of this expansion.

Alex Ishii is incorporating recent shifts from voltage control of the pad output impedance to a scheme
utilizing digitally controlled D/A networks for implmenting the controlled impedance pullup and pulldown
devices.\e have located commercial suppliers for closed loop Fluorinert cooling systems. and plan to purchase I
this component when it appears to be the pacing item in th, design. High efficiency low voltage power
supplies remain a difficult issue, but interim low-efficiency designs will allow us to test the remainder of
the system, while determining more efficient systems.

Network design for large-scale machines was investigated by Anant Agarwal and his students. We
showed that when switch delay was included in the analysis of direct interconnection networks, the optimal
network implemented in two physical dimensions in terms of the latency, was three dimensional. This is in
contrast to previous findings that showed that a two dimensional network was optimal. The chief reason I
for the difference is that node delays can make the wire delays have a relatively smaller impact on overall
latency. A detailed performance model for circuit-switched interconnection networks was developed [60].
Simulators for circuit-switched and packet-switched indirect networks are operational, and we now also |
have a packet-switched direct network simulator.

5 Systems Software

Andrew Chien and Bill Dally are developing data abstraction tools that support the development of pro-
granis for large scale multicomputers. A language, concurrent aggregates. has been defined that facilitates

the specification of aggregates of cooperating objects. Concurrent aggregates permit the relationships
between objects to be defined textually rather than requiring that the objects connect up a pointer struc-
ture at run-tirne as is typically done. Common structures (e g., combining trees) c tn be definei once and

reused as required. The language also permits nesting of object aggregates and specialization of objects I
within the aggregate. This work is beiig performed by Andrew Chien for his MIT Ph.D. thesis.

l)uring the reporting period, the concurrent aggregates (CA) language has been defined. A compiler
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Ithat translates CA programs to C++ has been written. The outpm of this compiler is linked with a
,iun-time written in C++ that simulates parallel machine execution. A number of programs have been
written in CA to evaluate the language. A study of the efficiency of the language and its implementation
iU iurrei, !v underway.

Bill )ally and Lucien Van Elsen !have developed a technique, micr,-optimization, for reducing the

operation count and time required to perform numerical calculations. fhe method in-!,ez iirst breaking
floating point operations into their constituent integer micro-operations, then optimizing and scheduling
the resulting integer code. The method ha., been tested using a prototype expression compiler [5,4]. We
are now looking at extending the method to permit a compiler to perform automatic scaling of numbers.
%Where it is possible, this optimization would convert floating point expressions into integer expressions.

.John Keen and Bill Dally have been investigating several problems involved in constructing highly
concurrent database systems on concurrent computers augmented by large disk arrays. The goal is to
develop systems technology that will permit database systems based on concurrent computers to handle

10' transactions per second. To date we have concentrated on parallel algorithms for logging, recovery, and
rcnsistency control. 'I ne paraiiel logging and recovery algorithms make use of parallel logs that represent
a partial order of actions and the use of log processors to compress the logs on a regular basis. We are
invesigating consitency control algorithms that use reservations to achieve a higher degree of concurrency
than is possible using locks.

Anant Agarwal has continued explorations of methods of programming a large-scale parallel computer
such as the ARC. These investigations take two forms. First, we are looking at methods of partitioning
and scheduling parallel programs to minimize communications. Numerical algorithms that can exploit
locality are being investigated. Tradeoffs in the use of block techniques for linear algebraic codes are being
studied. We currently have several parallel address traces of several runs of parallel blocking methods
and we are studying their impact on cache and network performance. Scheduling methods that exploit
both locality and the communication latency hiding, provided by a rapid context-switching processor.
are being investigated. Our experimental scheduler runs on our simulation system. Our second thrust is
towards enhancing our parallel programming language to allow (1) the convenient specification of data
parallelism using structures similar to the dataflow I-structures, and (2) allow experimentation with data
placement and relocation, function and data shipping, and different programming models including weaker
shared memory models with block transfer capabilities. Our current status is that the language primitives
have been defined as extensions to Mul-T and their implementation in the compiler and simulator are in
progress. The APRIL compiler and linker and the lazy future kernel have been implemented. Extensions
for garbage collection and efficient floating-point support are being developed. The T language has also
been sorted to the Sparc and the Decstation (Pmax).

To gain more experience with programming large-scale parallel machines we are also writing several
parallel applications. Our major effort has been spent on Speech. This application comprises the viterbi
search portion of a connected speech recognition system being implemented by the Speech and Spoken
Language Systems Group at MIT. We have also written particle-in-cell in Mul-T. Several other parallel
applications that we have written include logic simulation, and permute. The Simple application is also
partially written in Mul-T.

Several performance evaluation tools and methods have been developed. Our T-Mul-T miltiprocessor
address tracer is operational. We developed a technique for trace compaction that exploits the spatial
locality of memory referencing in multiprocessors [61]. A novel model for multithreaded processors has

also been derived. A processor locality-based multiprocessor cache interference model has been developed
[58].

System studies putting all the above pieces together are also in progress. A detailed multiprocessor
simulator has been implemented and is functional. The simulator is comprised of the APRIL processor
simulator, the cache and memory system, and the interconnection network. Parallel applications written
in Mul-T are compiled to APRIL (ode and can be executed on the multiprocessor simulator. We have
successfully run our large speech application on 16 processors. each with a multithreaded degree of four. If
needod the FORTRAN post-mortem scheduler or T-Mul-T tracer can replace the APRIL processor front

I
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6 Algorithms

In the area of algorithms. thiee students--Ron Greenberg, Bruce Maggs. and Cindy Phillips-finished
their Ph.D. theses under the direction of Charles Leiserscn.

Rtonall (;rhenhrg has completed his Ph.D. thesis entitled 'Efficient Interconnection Schemes for VLSI
a Paral ] ('omputation." "The thesis is primarily concerned with the design of efficient interconnec-
tion networks for general-puprpose parallel computers and the more spccialized problem of multilayer
'hannel routing for VLSI chips. In addition, it provides lower bounds on the area required for V'LSI
impleiment at ions of finite-state machines.

lThe first part of Greenberg's thesis shows why networks based on Leiserson's fat-tree architecture are
nearly as good as any network built in a comparable amount of physical space. Such networks can simulate
any other network of the same area with slowdown which is a small polylogarithmic function of the area.
These "universal" networks can be constructed in area linear in the number of processors. so that there is
no need to restrict the density of processors in competing networks. Also it is possible to compare networks I
that are of different size or are built from processors of different sizes (as determined by the amount of
attached memory). In addition, many of the results given do not require the usual assumption of unit
wire delay. Also, it is possible to simulate competing networks even if the processors are not globally
synchronized into separate phases of internal computation and interprocessor communication. Finally, the I
results apply not only in two dimensions, but also in three dimensions by way of a simple demonstration
of general results on graph layout in three dimensions. This part of the thesis includes joint work with
Charles Leiserson of MIT. I

The second part of Greenberg's thesis discusses the channel routing problem in the context that maiy
layers of interconnect are available. It describes a system, MulCh, for multilayer channel routing, which
extends the Chameleon system developed at U. C. Berkeley. Like Chameleon, Mu!Ch divides a multilayer
problem into essentially independent subproblems of at most three layers, but unlike Chameleon, MulCh I
considers the possibility of using partitions comprised of a single layer instead of only partitions of two or
three layers. Experimental results show that MulCh often performs better than Chameleon in terms of
channel width, total net length. and number of vias. In addition to a description of MulCh as implemented,
Greenberg's thesis discusses improved algorithms for subtasks performed by MulCh, thereby indicating
potential improvements in the speed and performance of multilayer channel routing. In particular, linear
time suffices to determine the minimum width required for a single-layer channel routing problem, and
the density of a collection of nets can be maintained in logarithmic time per net insertion. The work on
MulCh is joint with Alex Ishii of MIT and Alberto Sangiovanni-Vincentelli of U. C. Berkeley; the work
on single-layer channel routing is joint, with Miller Maley of Princetoi, U.

The last part of Greenberg's thesis shows that straightforward techniques for implementing finite-state
machines are optimal in the worst case. Specifically, for any s and k, there is a deterministic finite-state
machine with s states and k symbols such that any layout algorithm requires Q(ks Ig s) area to lay out its
realization. For nondeterministic machines, there is an analogous lower bound of Q2(ks 2 ) area. This work I
is joint with Mike Foster of Columbia University.

Bruce Maggs also finished his dissertation, entitled Locality in Parallel Computation. The thesis ex-

plores strategies for exploiting locality in three major areas of parallel computation: packet routing, parallel
algorithm design, and ,.ecwork emulations.

The first part of Maggs's thesis deals with a novel network-independent approach to the packet-routing

problem. The strategy is to partition the problem into two stages: a path-selection stage and a scheduling
stage. In the first stage paths are found for the packets with small congestion, c. and dilation, d. Once the I
paths are fixed. both are lower bounds on the time required to deliver the packets. In the second stage we

find a schedule for the movement, of each packet along its path so that no two packets traverse the same
,dge at the same time: consequently, the total time and maximum queue size required to route all of the
packets to their destinations are minimized.

Although path-selection strategies vary from network to network, Maggs shows that there is an efficient
on-line scheduling algorithm for the entire class of layered networks. When applied to an N-packet problem,

the algorithm produces a schcdule of length O(r + d + log N), with high probability. The algorithm has
mrany applicatiohs to routing and sorting. Among them are the first on-line algorithms for routing N-
pakots on an N-node shuffle-exchange graph in O(log ,V) steps using constant-size queues and for routing

8
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k.Ilk packets on a k-dimensional array with side length If in 0(k.11) steps using constant-size queues.
The scheduling algorithm can also be used as a subroutine in sorting algorithms. It yields tie first
asymptotically optimal algorithms for sorting on butterfly, shuffle-exchange. and multidimensional array
networks using constant-size queues. The algorithm can also be applied to the constriction of area-
ni ",vrsal net works: .V-node networks with VLSI-layout area 0(N) that can simulate all other networks

with area O(N.\) with only 0(log.N) slowdown. Maggs also proves the existence of a schedule of length
)(c- 4) for any set of ,ackets whose paths have congestion c and dilation d (in any network) that uses

colstarit-,ize" ,lie,!.. 1Unforttunately, no efficient algorithm for constructing tile schedule is known.
Ilie second part of Nlaggs's thesis introduces a model for parallel computation. called the distributed

randiim-access machine (DRAM). in which the communicaioi requireme'-r of parallel algorithms can be
evaluated. A DRAM is an abstraction of a parallel computer in which memory accesses are implementedy roi utin essaes through a communication network. It explicitly models the congestion of messages
,ross cuts of the network.

Maggs introduces the no tion of a conserratire algorithm as one w,,hose conmmunication requirements at

Iach step can he bounded by tile congestion of pointers of te input data structure across cuts of a DRAM.
A conservative algorithin is guaranteed not to generate undo congestion in any underlying network. Maggs
presents conservative algorithms for a variety of graph problems. Prob!ems such as computing treewalk
nurniberings, finding the separator of a tree. and evaluating all subexpressions in an expression tree can
be solved in O(log .N) steps 5or .V-node trees by conservative algorithms for an exclusive-read exclusive-
write DRAM. More complex problems includu finding a minimum-cost spanning forest, and computing
hicrinected components and constructing an Eulerian cycle require O(log 2 .V) steps, for graphs of size
A,. For concurrent-read concurrent-write DRAM's. all of these problems can be solved by O(log .V) step
-,niservativf- alg~orithmls.

-The final part of the thesis examines the problem of low efficiently a host network can emulate a guest

ietwork. The goal is to emulate TG steps of an .VG-node guest network on an NH node host network.
An emulation is called work-preserring if the time required by the host, TH is O(TGVG/.H) because
then both the guest and host networks perform the same amount of total work (processor-time product).
O(T,: .VcN . to within a constant factor. A work-preserving emulation is efficient because it achieves optimal
speedup over a sequential emulation of the guest. An emulation is real-time if TH = O(TG). because then

the host emulates the guest wit i ,:_stant delay.
Although many isolated emulation results have been proved for specific networks in the past. and

measures such as dilation and congestion were known to be imporlant. the field has lacked a model within
which general results and meaningful lower bounds could be proved. Nla ;gs provides such a tmodel along
with techniques for proving lower bounds based on comparing the locality the networks. Some of the
nmore interesting and diverse results in this part of the thesis include a proof that a linear array can
-mulatp a tmuch larger) butterfly in a wurk-preserving fashion, but that a butterfly cannot emulate an
-xpatuder (of any' size) in a work-preserving fashion: a proof that a mesh can be emulated in real tite in
a work-preserving fashion on a butterfly, even though any O(1)-to-I embedding of the mesh has dilation
Q(log .V): and a proof that an N-node butterfly can emulate an N log N-node shuffle-exchange graph in a
work-preserving fashion, and vice-versa.

Cynthia Phillips finished her dissertation, entitled Theoretical and Experimental Analyses of Parallel
Combinatorial Algorithms. The thesis investigates parallel algorithms for graph and matrix problems.
Some of the algorithms are known, and some she has developed. She has analyzed them theoretically and
,,xperimentally. The thesis is broken into five parts.

The first major contribution of her thesis shows how n-node, e-edge graphs can be contracted in a man-
rier similar to the parallel tree contraction algorithm due to Miller and Reif. She gives an 0((n + e)/ Ig n)-
pror ssor deterministic algorithm that contracts a graph in O(lg 2 n) time in the ERE\V PRAM model.
She also gives an O(n/ Ig n)-processor randtomized algorithm that with high probability can contract aI oinded-deerof grtph in 0(ig n + Ig titue, where is the niaxinim genus of any connected component
of the, graph. (The algorithm an be made to run in deterministic O(Ig n Ig' n + 1g2 -1) time using known
tecliniques ) Fhis algorithrn does not require a priori knowledge oft he genus oft he graph to be contracted.

I e contraction al gorithm for bountdel-degree graphs can be used directly to solve the problem of region
labeling in vision systems. i.e., determining the connected components of bounded-degree planar graphs
i, O( Ig n) tite. thus rproving the best, previous bound of O(Ig 2 r).
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[he second part describes tour AFLN-like primitives for manipulating dense matrices and vetors and
,,scrihe their ilmplementation oil the ('onnection Machine hypercibe multiprocessor. These prinittiv.'S
provide- :a natitral way of specifying parallel matrix algorithllin independently of machine size or architec-

ire ~til alt icTually ,nhane e.tffieicy hv facilitatinig autti,,atic lad halancing. The implement at ion-,
ir, -.Ifi "'ilt in ihi frequently ocurring case where there are, fewer processors than matrix elements. I:

tartictlar, if there are 7n > pl gp matrix elements. where p is the inumber of processors, tlen the i-

IlAlelt atiOnis of ;ome of the primitives are asymptotically optimal for a weak hyp'.'rcube in that tlie,

procesor-I iine product is no more than a ci nstant factor higher than the running time of the best serial
al~entritm, Furthermore, the paral!el time required is optimal to within a constant factor. Her imple-
iiientation of the primitives on the Connection Machine 2 system improved the performance of a siiplex

pr,,ram for linear programming by almost an order of magnitutde over a nal,*e implementation. from 55 I
\hh p, to 525 Nlflops

i he third portion of lier thesis investigates dimension-eiclanqe load balancing which is a generalization
of ,ne of t I.e techniques used in the hypercube implementation of the vector-matrix primitives. Slie h,)w, I
that when tasks are considered indivisible, after one pass of dimension-exchange load balancing, in the
wcrst case, sorie processor will have O(lg 71) tasks over the average. Shc also shows that there is an initial
ditribution of tasks for which this load-balancing strategy requires an average of -(lg n) messag s f,,r
,ach unit reduction in the global muaximum number of tasks.

The fourth part of Phillips's thesis reports on preliminary experimental investigations which iridi,_ato
that massively parallel computers like the Connection Machine (CM) appear to be well suited for both
sparse and dense implementations of dual relaxation algorithms for network optimization. (Her parallel I
uipl nontation of a nonlinear network optimization program on the Connection NMachine is the fa stest
prograu to late for its class of probiems.) Inplernentations of a dense version of a known algorith i
for tile a.ssignment problem and parallel versions of known heuristics for the traveling salesman problem
sutfered from a 'sequential tail" phenomenon. Tail-cutting heuristics with appropriate case-sensitlvei
paranlenters improved performance markedly.

le tifth an(d last rontribution ini her thesis is the design of a VLSI chip which pseudorandomly permtites
bit-serial messages by sending them through a Benes network whose switches have been pseudorandonily U
st. Providing a pseudorandom permuter in a simple, high-troughput chip could improve the performanc'e

,of routing algorithms for multiprocessors.
hlomo Kipuis investigated priority arbitration schemes that employ busses to arbitrate among n I

modiles in a digital system. I. focused on distributed mechanisms that employ in busses, for Ig <
m < n. and use asynchronous combinational arbitration logic. A widely used distriouted asynchromou
nmechanism is the binary arbitration scheme, which with m = ign busses arbitrates in t Ign units
-f timu,'. Shlomo Kipnis presented a new asynchronous scheme - binormal arbitration -- that by usinig
n = ig ) + 1 busses reduces the arbitration time to t = Ig n. Extending this result. he presented the
qcneralized binomial arbitration scheme that achieves a bus-time tradeoff of the form m = E)(ti 1 / t ) between
the number of arbitration busses m and the arbitration time t (in units of bus-settling delay), for values of I

< I < Ig n and Ig n < rn < n. These schemes are based on a novel analysis of data-dependent delays and
genetralize the two known schemes: linear arbitration, which with in = n busses achieves t = I time, and
binary arbitration, which with m = Ign busses achieves t = Ign time. Most importantly, these schemes
Cail be a o-pted with no changes to existing hardware and protocols: they merely involve selecting a good
-,'t of priority arbitration codewords. The binomial arbitratic,, and the generalized binomial arbitration
,chietis are a subject of a patent application.

Bruce Maggs and Tom Leighton have been studying adaptive fault-tolerant algorithms for pack-t
rol t.ing They have shown that an V-input multibutterfly can sustain k faults aiid still route log N per-
,jilt ttotis betwoen sortie set of N-O(k) inputs and .V-O(k) outputs in O(log N) time. 'The miltibutterfly

is,, inor,, resilient to randomized faults. For example, with high probability, a specially modified twin I
L ttortly can tolerate .V34 faulty internal nodes, and still route any log,\' permutations of N packets in
0( lgV) tii. Thus, the multibutterfly is the first bounded-degree network known to be able to sustain
large numbers of faults with only minimal degradation in performance.

In the past year, Tom ('ormen has continued to write the textbook Introduction to Algorithms with I
Profssors leisrson and Rivost. The book will be published in early 19A(1.

Marns Papaeft hyniou continued his research on synchronous circuit optimizat ion under tie supervision
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,f Prof. Leiserson. His work 6, Lused M investigating the underlying structure of the retiming operation.
h, result of this effort was a concise closed-semi ring description of retiming for unit-delay circuits. This

.c ipat es,'ription 4ugge-sts a Fromis;g point of view for looking at re timing. Marios PapaefthynicuUl-rr-ink trgm to ,l, 'In efficient algorithns tor optiium ret ining. by exploiting the group strul-Lure

l)iri,4 ,h'. past six months. James K. Park has been collaborating with Alok Aggarwal and Dina

1'av-t s ,i1 a n1ln1-,,r of problems relating to totally monotone arrays. Such arrays arise naturally in a
w,,e varity f fi,hls, including computational geometry. dynamic programming, and VLSI river routing.
Parks work wit Ih Aggarwal centers on the problem of finding maximum entries in totally monotone arrays
ind applications of efficient sequential and parallel algorithms for this problem. Park's work with Kravets
itvestigates the problems of selection and sorting in the context of totally monotone arrays and applications
.f efhciont algoriti ms for these problems.

Alexander Ishii has been generalizing his VLS1 tinting analysis algorithms. A key concern has been the
fe to accurately handle the 'undefined" values that electrical signals must take on when they make aI

Transition b Itwen valid logic ' vels. In addition, he has attempted to make the algorithms easily adaptable
tI ,iffirent assumptions about the circuit being analyzed.

Prcf L-ighlon is continuing his research on networks and algorithms for parallel computation. Recent ly
fI hs focussed on the following specific problems: the development of fast packet routing algorithms for
. .iniiion ly used fixed-con nection networks, ie development of algorithms o reconfigure networks such as
rie by percube aroiint faults, the develop,,ent of dynamir on-line algorithms for embedding computational
-tructures such as trees in networks. such as the hypercube. in a way that balances computational load
:M] (hat filiiiiiiizes the induced communication load on the network, the development of algorithms for
-mulating one kind of network on another in a way ti- it preserves the total amount of work (processors ,

ru11e) that is lone, and the development of a new network architecture for routing that can tolerate large
n'iiers of faults without a substantial degradation in performance. The particular advances that have
,-en made in each of these areas is briefly sumn rized in what follows.

In tire area of packet routing. Prof. Leighton and his coauthors have discovcred the first store-and-
forward routing algorithm which can route n 2 packets in 2n - 2 steps on an n x n array with constant
lz,. queues at each node. The details of these and related results can be found in [16]. They have also
iiscovered new and more efficient routing algorithms for the multibutterfly. These algorithms are tle first
hat are highly tolerant of worst case faiilts. Also in the area of fault-tolerance. Prof. Leighton and his

coaut hors hay shown that, a hypercube can tolerate a very large number (a constant fraction) of randomlv
located faults without incurring more than a constant factor loss in performame, no matter how large
t,li hvprc ul,o i They have also discovered simple algorithms for routing aro ind faults in the hypercube

That are q uarantee(d to perform nearly as well as the best routing algorithms when no faults are present.
[ he details of this work are described in [12].

In th aroa of network embeddings and scheduling. Prof. Leighton and his coauthors have tiscovered

ptimal algorithms for embedding dynamically growing and shrinking trees in a hypercube so that the

proressing load on the nodes of the hypercube is balanced, and so that all communication links are l cal.
Fhis work hu-s a[plication to the problem of locally scheduing the work assigned to the processors of a
hpercubo in a dynamic fashion (i.e., as one computation spawns another, the algorithm determines the
proc,'ssor that will handle the new task). They have also discovered optimal algorithms for mapping code
written for one architecture onto a different architecture in a way that minimizes the total amount of work

r,qutr,.d by the similating machine. These results are described in [7.25].
The past year was also a good one for Prof. Leighton's students. Bruce Maggs, Satish Rao. Richard

Koch. and Mark Newman all obtained their Ph.D.s this year. Together with Prof. Leighton. they made
l,,ts of lid progrss on packet routing algorithms, fault tolerance in netwcks, and otn graph embeddi rg
prolers ..\t this point t hey are getting close to asymptotically )pt imal results that also appear to work
w-ll in reality In fact, the highlight of the coming year will be to help design and lay out a Jilt ibutterfly
iutwork for 'loin Knight's new machine With a little luck, theory will be able to play an important
r,,o in th dov,-lopiuemnt of a state of the art, tiachine. Prof. Leigh' an is also working with Bill Dally and

his studeits to see if thIeory can be helpful witi the routing protocols on his new machine, and ie has
been talking with Alan Baratz about the possi hilities of inipletentuing some of the new theory routing
algoritiloris ott the IBM (.F I so that it can bec(,ue a general purpose routing machine.
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Another highlight of the last six months was the new ACM Symposium on Parallel Algorithms and
Arhitctures that Prof. Leighto n h,- ifed to organize. The first n.eeting was in Sante Fe in mid-June.
tli, the iiecting was very successful. Papers t1 at were presnted ranged from theory to practice and the
,ne til, rov-dd a eod forum for interact ion between people who think about parallel mac-ines. those I

'01'' 1,1111d thieii. iind those who use "heniw .

7 Applications I
Over the past six months. efforts in developing numerical algorithms for problems rel-ted to the design
)f an ARC, as well -s those that can effectively exploit the ARC's capability, have continued under
II,, rection of Jacob White. Interesting new algorithms have been unearthed in the areas of parallel

ircilit simulation and monte carlo device simulation. In addition, preliminary experiments with r-cently
.levelopecI algorithms in canacitance extraction and classical semiconductor device simulation have hee.i
',mnpleted with very encouraging results.

In the area of circuit simulation, we have completed the development of SI.MLAB [ 69,70]. a fast.
,oneral purpos0 circuit simulation program intended for use in clr-uit simulation research. The program
is presently being used for our course in numerical simulation as well as forming the basis for thre,

,nging research projects. SIMLAB is being used to study multiple timepoint methods for increasing the
tparallelisin in cirruit simulation so as to effectively exploit a miassively parallel F.-ocessor on reasoniable i

siz'd problems. In adlition. SIMLAB is being used to study multigrid variations for efficient simulation I
'f the analog arrays, like those used in early vision.

SIMLAB has also been used to study the behavior of the switched linear re.,istive and nonlinear
resistlve networks used for image smoothing and segmentation algorithms (under the supervision of Prof.
.1 \Watt). Arc-length style continuation methods were added to SIMLAB so that comparison studies of I

.veral continuation methods can be gracefully implemented in analog VLSI.

Also iiL the area of circuit simulation, we have undertaken a study of Exponeitial-Fitting numerical
nt egrion algorithms. We have been able to prove several si tong resulti, indicating that the performance of I
r--,-ntly publishe'l exponential-fitting algorithms are. in the limit of large timesteps, identical to other well-
known techniques Detailed experiments indicate exponential-fitting offers little advantag-. We have also
,xaniined several modifications which seem to improve the accuracy of the exponential-fitting algorithm.
kut it is unlikely to produce results thai are competitive with more standard techniques.

In the area of classi, al device simulation, w- have completed preliminary experiments using waveform
r,,l::xatin to perform transient two-dimensional simulation of MOS de; ices. Experiments demonstrate
th W converges in a unif, rm manner, and that there is typically some multirate behavior in a device
that the WI{ algorithm can exploit. Speed and acciracy comparisons between standard direct methods.
red/black Gauss-Seidel WR. and red/black overrelaxed WR indicate that for the experiments examined,
,-lrulated terminal currents match well between the mt hods, and that overrelaxed WR was bc,ween 2 and
- rimes faster than direct methods. A recently imnpiemerted modification based on a waveform-Newton
;Ilgorithi incr_-ased this to a factor of from 5 to 11 [9,10].

Our other project in clast :al device simulation is in developing efficient and robust numerical algo-
rithins for a two-dimensional semiconductor device simulator that includes both momentum and energy U
lalance equations. fracking the electron energies allow., for a more accurate characterization of both hot

,lfctrotn effects and substrate currents. The program developed uses a full Newton method to compute
potentiais. electron concentrations, and electron tempertures on a grid that describes the deice. Ini-
tial siriulation results on a MOSFET were close to what was expected theoretically and what had been
published in the liter;,ture by other ,esearchers. Because of the reliability of the algoriti~ms used in this
,r(,gran. we expoct to he able to examine the effects of a wider range of physical models for nvbility and
impact ionizatio,n.

Simiulation of small geometry devices by particle simulation or Monte-(Carlo techniques is becoming
Incr,;Isi ngly popular. even though the method is computationally much more e::pensive than numerically

tvitg the st andard or modified drift-diffusion equations. We are presently investigating alternative I
wrieniral trchiniques to see if it is possible to make Monte-Carlo simulation less computa ionalIy expensive
and itnre parallelizable. In particular. we ire investigating the interaction between the particle miotions
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I ~II n l ihanges Ii th- electric fields.
d r. 1iiwii-;i;iia c aitaice anid iiliitance extraction have recently become important because the,

!i ' :ickirii, -f prcessors ;1nd i he riieniory required for high performance parall computers requirc

1U 11: i uii I it? or-. )iict Ior o insure an interconnect design will be capable of achieving desired
I!I oph;1~.4i itrc and Inductance mutst be examined. Over the past year we developed

11 1IIll, "At 11ii ri tiin for arb'it rary geomnet ries of ideal condurctors Ii a uniform dielectric.
it-, riii t1ishe calrlat ion complexity fiomi order r?" for the standard Algorit hm. to order

Yp is- ti. wii inr (f Vls the into which conductor surfaces are discret ized. TIhe algorit Innluses
Iif itipt in .rat ivc tecuii ique and a nitilt ipole expansion algorithm. Trhe init ial stages in the

i a i c f ri i i kxthIiree dimensional geometries are complete. and the mt thod provides iearlv,

!,,r ii iiV~p- in lro\.mit of the st andard approach with as few as eight conductors'8
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Express Cubes: Improving the Performance of k-ary n-cube I
Interconnection Networks'

William J. Dally
Artificial Intelligence Laboratory
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

July 11, 1989, revised August 31, 1989 3
Abstract

Express cubes are k-ary n-cube interconnection networks augmented by express channels that
provide a short path for non-local messages. An express cube combines the logarithmic diameter
of an indirect network with the wire-efficiency and ability to exploit locality of a direct network. I
The insertion of express channels reduces the network diameter and thus the distance component
of network latency. Wire length is increased allowine networks to operate with latencies that
approach the physical speed-of-light limitation rather .ian being limited by node delays. Express I
channels increase wire bisection in a manner that allows the bisection to be controlled independent
of the choice of radix, dimension, and channel width. By increasing wire bisection to saturate
the available wiring media, throughput can be substantially increased. With an expres- cube I
both latency and throughput are wire-limited and within a small factor of the physical limit
on performance. Express channels may be inserted into existing interconnection networks using

interchanges. No changes to the local communication controllers axe required.

1 Introduction I
Interconnection networks are used to pass messages containing data and synchronization infor- 3
mation between the nodes of concurrent computers (1] (2] [16] [17]. The messages may be sent
between the processing nodes of a message-passing multicomputer [1] or between the processors
and memories of a shared-memory multiprocessor [2].

An interconnection network is characterized by its topology, routing, and flow control [10]. The
topology of a network is the arrangement of its nodes and channels into a graph. Routing de-
term-ines the path chosen by a message in this graph. Flow control deals with the allocation of
channel and buffer resources to a message as it travels along this path. This paper deals only
with topology. Express cubes can be applied independent of routing and flow control strategies.

The performance of a network is measured in terms of its latency and its throughput. The latency
of a message is the elapsed time from when the message send is initiated until the message is

'The research described in this paper was supported in part by the Defense Advanced Research Projects Agency
under contracts N00014-88K-0738 and N00014-87K-0825 and in part by a National Science Foundation Presidential
Young Investigator Award with matching fands from General Electric Corporation and IBM Corporation.
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completely received. Network latency is the average message latency under specified conditions.

Network throughput is the number of messages the network can deliver per unit time.

Low-dimensional k-ary n-cube networks using wormhole routing have been shown to provide low
latency and high throughput for networks that are wire-limited [41 [5] [9]. For n < 3, the k-ary

n-cube topology is wire-efficient in that it makes efficient use of the available bisection width. This
topology maps into the three physical dimensions in a manner that allows messages to use all of the
available bandwidth along their path without ever having to double back on themselves. Also, low-

dimensional k-ary n-cubes concentrate bandwidth into a few wide channels so that the component
of latency due to message length is reduced. In most contemporary concurrent computers, this is
the dominant component of latency. Because of their low-latency, high throughput, and affinity for

implementation in VLSI, these k-ary n-cube networks with n = 2 or 3 have been used successfully
in the design of several concurrent computers including the Ametek 2010 [17], the J-Machine [7]

[81, and the Mosaic [18].

However, low-dimensional k-ary n-cube interconnection networks have two significant shortcom-
* ings:

* Because wires are short, node delays dominate wire delays and the distance related compo-
nent of latency falls more than an order of magnitude short of speed-of-light limitations. In
the J-Machine [7], for example, node delay is 50ns while the longest wire is 225mm and has
a time-of-fight delay of 1.hns.

* The channel width of these networks is often limited by node pin count rather than by
wire bisection. For example, the J-Machine channel widt' is limited to 9-bits by pin count

limitations. In the physical node width of 50mm, a 6-layer printed circuit board can handle
over four times th i channel width after accounting for through holes and local connections.

In short, many regular k-ary n-cube interconnection networks are node-limited rather than wire-
limited. In these networks, node delay and pin limitations dominate wire delay and wire density
limitations. The ratios of node delay to wire delays and pin density to wire density cannot be

balanced in a regular k-ary n-cube.

Express cubes overcome this problem by allowing wire length and wire density to be adjusted

independently of the choice of radix, k, dimension, n, and channel width, W. An express cube3 is a k-axy n-cube augmented by one or more levels of express channels that allow non-local

messages to bypass nodes. The wire length of the express channels can be increased to the

point that wire delays dominate node delays. The number of express channels can be adjusted to
I increase throughput until the available wiring media is saturated. This ability to balance node and

wire limitations is achieved without sacrificing the wire-efficiency of k-ary n-cube networks. The

number of channels traversed by a message in a hierarchical express cube grows logarithmically3 with distance as in a multistage interconnection network [11][19]. The express cube, however, is

able to exploit locality while in a multistage network all messages must traverse the diameter of

the network. With an express cube, both latency and throughput are wire limited and are within3 a small constant factor of the physical limit on performance.

The remainder of this paper describes the express cube topology and analyzes its performance.
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Section 2 summarizes the notation that will be used throughout the paper. Section 3 introduces
the express cube topology in steps. Basic express cubes (Section 3.1) reduce latency to twice the
delay of a dedicated wire for messages traveling long distances. Throughput can be increased to
saturate the available wiring density by adding multiple express channels (Section 3.2). With a
hierarchical express cube (Section 3.3), latency for short distances, while node-limited, is within
a small constant factor of the best that can be achieved by any bounded degree network. Some
design considerations for express cube interchanges are discussed in Section 4.

2 Notation 1
The following symbols are used in this paper. They axe Listed here for reference. 3
C, the set of channels in the network.
D, manhattan distance traveled by a message, IX. - zXdI + 1Y. - YdI + Iz. - zdl, where

the source is at (z,, y,, z.) and the destination is at (xd, Yd, zd).
H hops, the number of nodes traversed by a message.

1, number of nodes between interchanges in an express cube.
k, the radix of the network - the length in each dimension.

1, the number of levels of hierarchy in a hierarchical express cube.

L, the message length in bits. U
n, the dimension of the network.
N, the set of nodes in the network. Where it is unambiguous, N is also used for the

number of nodes in the network, INI.

T, the latency of a aode.
T,, the latency of a wire that connects two physically adjacent nodes. 1
Tp, the pipeline period of a node.

W, the width of a channel in bits.

a, the ratio of node latency to wire latency, T/T,.

Communication between nodes is performed by sending messages. A message may be broken
into one or more packets for transmission. A packet is the smallest unit that contains routing I
and sequencing information. Packets contain one or more flow control digits or flits. A flit is

the smallest unit on which flow control is performed. A flit in turn is composed of one or more

physical transfer units or phits2 . A phit is W-bits, the size of the physical communication media. I
An interconnecton rietwork consists of a set of nodes, N, that are connected by a set of channels,
C C N x N. Each channel is unidirectional and carries data from a source node to a destination 3
node. For the purposes of this paper it is assumed that the network is bidirectional: channels
occur in pairs so that (ni,n 2 ) E C =* (n 2 ,n 1 ) E C.

'There is no constraint that the physical unit of transfer, phit, must be smaller than the flow control unit, flit. t
It is possible to construct systems with several flits in each phit.
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(A)

m (B)I
Figure 1: Insertion of express channels reduces latency: (A) A regular k-ary 1-cube network may
be dominated by node delay, (B) A k-ary 1-cube with express channels reduces the node delay

I component of latency.

1 3 Express Cubes

3 3.1 Express Channels Reduce Latency

Figure 1 illustrates the application of express channels to a k-ary 1-cube or linear array. A regular
k-ary 1-cube is shown in Figure 1A. The network is linear array of k processing nodes, labeled N,

each connected to its nearest neighbors by channels of width W. The delay of a phit propagating
through a node is T,. The delay of the wire connecting two nodes is T,. Each channel can accept3 a new phit every Tp. The latency of a message of length L sent distance D is

T = HTT. + DT. + -WT = (T, + T)D + -LTp. (1)

Message latency is composed of three components as shown in equation (1). The first component
is the node latency, due to the number of hops, H. The second component is the wire latency, due
to the distance D. The third component is due to message length, L. For a conventional k-ary
n-cube, H = D and since for most networks T, >> T,, the node latency dominates the wire
latency. Express cubes reduce the node latency by increasing wire length to reduce the number
of hops, H.

An express k-ary 1-cube is shown in Figure 1B. Express channels have been added to the array
by inserting an interchange, labeled I, every i nodes. An interchange is not a processing node.
It performs only communication functions and is not assigned an address. Each interchange

is connected to its neighboring interchanges by an additional channel of width W, the express
channel. When a message arrives at an interchange it is routed directly to the next interchange if
it is not destined for one of the intervening nodes. To preserve the wire-efficiency of the network,3 messages are never routed past their destinations on the express channels tven though doing so
would reduce H in many cases.

The delay, T, and throughput, IT,, of an interchange are assumed to be identical to those of
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a node. The wire delay of the express channel is assumed to be its,. To simplify the following I
analysis, it is assumed that interchanges add no physical distance to the network. Assuming ilD,
H = D/i + i and insertion of express channels reduces the latency to 5

Tb = (D.iT+ ~ +~ 2rb= + i )T,, + T. D +- .-. (2)

In the general case, an average message traversing D processing nodes travels over Hi = (i + 1)/2
local channels to reach an interchange, He = LD/i - 1/2 + 1/(2i)J express channels to reach the
last interchange before the destination, and finally Hf = (D - i/2 + 1/2) mod i local channels to
the destination. The total number of hops is H = Hi + He + H1 giving a latency of

+ - -+ + ((D - + modi T, + DT,. + (3)

For large distances, D >> a = T/T, choosing i = a balances the node and wire delay. With I
this choice of i, the latency due to distance is approximately twice the wire latency, TD ; 2T,D.
The latency for large distances of large express channel network with i = a is within a factor of
two of the latency of a dedicated manhattan wire between the source and destination 3 .

For small distances or large a, the i term in the coefficient of T, in equation (2) is significant and
node delay dominates. For such networks, latency is minimized by choosing i = VID resulting in I
TD - 2(v/t - 1)T,,. The use of hierarchical express channels (Section 3.3) can further improve
the latency for small distances. 5
3.2 Multiple Express Channels Increase Throughput to Saturate Wire Density

To first order, network throughput is proportional to wire bisection and hence wire density. If more
wires are available to transmit data across the network, throughput will be incrdased provided

that routing and flow control strategies are able to profitably schedule traffic onto these wires. I
Many regular network topologies, such as low-dimensional k-ary n-cubes, are unable to make use
of all available wire density because of pin limitations. The wire bisection of an express cube can
be controlled independent of the choice of radix, k, dimension, n, or channel width, W by adding I
multiple express channels to the network to match network throughput with the available wiring
density.

Figure 2 shows two methods of inserting multiple express channels. Multiple express channels
may be handled by each interchange as shown in Figure 2A. Alternatively, simplex interchanges
can be interleaved as shown in Figure 2B.

In method A, using multipie channel interchanges, an interchange is inserted every i nodes as above
and each interchange is connected to its neighbors using m parallel express channels. Figure 2A
shows a network with i = 4 and m = 2. The interchange acts as a concentrator combining

'There is nothing special about the factor of two. By choosing i = ja the distance component of latency will
be (I + I /) times the latency of a manhattan wire. 5
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Figure 2: Multiple express channels allow wire density to be increased to saturate the available

wiring media. Express channels can be added using either (A) interchanges with multiple express

channels, or (B) interleaved simplex interchanges.

3 messages arriving on the m incoming express channels with non-local messages arriving on the
local channel and concentrating these message streams onto the m outgoing express channels.
This method has the advantage of making better use of the express channels since any message

can route on any express channel. Flexibility in express channel assignment is achieved at the
expense of higher pincount and lniited expansion.

SWith method B, interleaving simplex interchanges, m simplex interchanges are inserted into each

group of i nodes. Each interchange is connected to the corresponding interchange in the next group

by a single express channel. All messages from the nodes immediately before an interchange will be5routed on that interchange's express channels. Because load cannot be shared among intericaved
express channels, an uneven distribution of traffic may result in some channels being saturated
while parallel channels are idle. Method B has the advantage of using simple interchanges and3allowing arbitrary expansion. In the extreme case of inserting an interchange between every pair

of nodes the resulting topology is almost the same as the topology that would result from doubling

the number of dimensions.

Both of the methods illustrated in Figure 2 have the effect of increasing the wire density (and
bisection) by a factor of m + 1. To first order, network throughput will increase by a similar
amount. There will be some degradation due to uneven loading of parallel channels.

The use of multiple express channels offsets the load imbalance between express and local channels.
If traffic is uniformly distributed, the average fraction of messages crossing a point in the network

on a local channel is P = 2i/k as compared to P, = (k - 2i)/k crossing on an express channel.

For large networks where k >> i, the bulk of the traffic is on express channels. Increasing the

number of express channels applies more of the network bandwidth where it is most needed.

Multiple express channels are an effective method of increasing throughput in networks where the

channel width is limited by pinout constraints. For example, in the J-Machine the channel width,

W 1 = 9, is set by pin limitations 4 . The printed-circuit board technology is capable of running 80

4 Each J-Machine node is packaged in a 168-pin PGA. The six communication channels each require 9 data bits
and 6 control bits consuming 90 of these pins. Power connections use 48 pin.. The remaining 30 pins are used by
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Figure 3: Hierarchical express channels reduce latency due to local routing. I

wires in each dimension across the " )mm width -,f a node. Even with many of these wires used
for local connections, four parallel 15-bit (data+control) wide channels can be easily run across

each node. A multiple express channel network with m = 3 could use this avail.ble wire density
to quadruple the throughput of the network.

3.3 Hierarchical Express Cubes Have Logarithmic Node Delay 3
With a single level of express channels, an average of i local channels are traversed by each

non-local message. The node delay on these local channels represents a significant component I
of latency and causes networks with short distances, D < a 2 , to be node limited. Hieraxchical
express cubes overcome this limitation by using several levels of express channelq to make node

delay increase logarithmically with distance for short distances.

The use of hierarchical express channels, shown in Figure 3, reduces the latency due to node

delay on local channels. With hierarchical express channels, there are I levels of interchanges. A 3
first-level interchange is inserted every i nodes. A second-level interchange replaces every ith first

level interchange, every i2 nodes. iz! general, a th level interchange replaces every ith J - I" level

interchange, every i nodes5 . Figure 3 illustrates a hierarchical express cube with i = 2, 1 = 2. I
A Pth level interchange has j+ I inputs and j+ I outputs. Arriving messages are treated identically

regardless of the input on which they arrive. Messages that are destined for one of the next i
nodes aie routed to the local (0th) output. Those remaining messages that are destined for one
of the next i2 nodes are routed to the I'" output. The process continues with all messages with

a destination between i and iP+ l nodes away, 0 < p ! j - 1, routed to the pth output. AllaI
remaining messages are routed to the j'h output.

A message in a hierarchical express cube is delivered in three phases: ascent, cruise, and descent.

In the ascent phase, an average message travels (i + 1)/2 hops to get to the first interchange,
and (i- 1)/2 hops at each level for a total of H. = (i - 1)1/2 + I hops and a distance of

D = (i - 1)/2. During the cruise phase, a message travels H, = L(D - D, )/i'j hops on level

external memory interface and control.
'This construction yields a fixed-radix express cube, with radix i for each level. It is also possible to construct

mixed-radix express cubes where the radix varies from level to level.
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3 Figure 4: Hierarchical interchanges (A) a third-level interchange. (B) a third-level interchange
implemented from first-level interchanges. (C,D) With a small performance penalty, ascending
and/or descending interchanges can be eliminated.

1 channels for a distance of D, = i1 H,. Finally, the message descends back through the levels
routing on each level, j, as long as the remaining distance is greater than il. For the special case
where 11ID, the descending message takes Hd = (i- 1)1/2+1 hops for a distance of Dd = (i'+ !)/2.3 This gives a latency of

T= + (i -1)1+ 1 , + T,,D + L-T (4)
7 W

Choosing 1 and I so that i1 = a balances node and wire delay for large distances. With this choice,
the delay due to local nodes is (i - 1)IT, = (i - 1) log aT, which is a inimun for i = e. While 3
is the closest integer to e, a choice of i = 4 is preferred to facilitate decoding of binary addresses
in interchanges, and networks with i = 8 or i = 16 may be desirable under some circumstances.

I in the general case, 91 XD, the latency of a hierarchical express cube is calculated by representing
the source and destination coordinates as h = logi k-digit radix-i numbers, S = sh-I"" so, and
D = dh. .. - do. WLOG we assume that S < D. During the ascent phase, a message routes

from S to sI . . . s 10 ... 0 taking H,, = 0iQ ((i - s,) mod i) hops for a distance of D. -

1=0((I - s,) mod i)i. The cruise phase takes the message H, = _ (dj - sj)i' - hops for a

distance of D, = Hil. Finally, Lh,. deacent phase takes the message from dh- 1 .. ald0.. .0 to D
taking Hd = .. dj hops for a distance of Dd = dji'. For short distances the cruise phase
will never be reached. The message will move from ascent to descent as soon as it reaches a node
where all non-zero coordinates agree with D. The total latency for the general case is plotted as

a function of distance in Figure 5.

Figure 4 shows how hierarchical interchanges can be implemented using pin-bounded modules. A
level-j interchange requires j + 1 inputs and outputs if implemented as a single module as shown
for a third level interchange in Figure 4A. A level-j interchange can be decomposed into 2i - 1

level-one interchanges as shown for j = 2 in Figure 4B. A series of j - I ascending interchanges

that route non-local traffic toward higher levels is followed by a top-level interchange and a series
of j - 1 descending interchanges that allow local traffic to descend. With some degradation in

performance, the ascending interchanges can be eliminated as shown in Figure 4C. This change

8
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Figure 5: Latency as a function of distance for a hierarchical express channel cube with i =4,

1 = 3, a = 64, and a flat express channel cube with i = 16, a = 64. In a hierarchical express

channel cube latency is logarithmic for short distances and Linear for long distances. The crossover
occurs between D = a and D = ia logi a. The flat cube has linear delay dominated by T, for 3
short distances and by T, for long distances.

I
requires extra hops in some cases as a message cannot skip levels on its way up to a high-level
express channel. Each message must traverse at least one level j - I channel before being switched

to a level-j channel. By restricting messages to also travel on at least one channel at each level I
as they descend, the descending interchanges can be eliminated as well leaving only the single
top-level interchange as shown in Figure 4D. 5
3.4 Performance Comparison

Figure 5 shows how latency varies with distance in hierarchical and flat express cubes and com-

pares these latencies with the latency of a conventional k-ary 1-cube and of a direct wire. These

curves assume that the message source is midway between two interchanges. The latencies are 3
normalized to units of the wire delay between adjacent nodes. The latency of a conventional k-ary

1-cube is linear with slope a while the latency of a wire is Linear with slope 1.

9I
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i Figure 6: A multidimensional express cube may be constructed either by (A) inserting inter-

changes into each dimension separately, or (B) interleaving mul ti- dimension al interchanges into
g the array.

IFor short distances, until the first express channel is reached, a flat (non- hierarchical) express cube

has the same delay as a conventional k-ary n-cube, TD) = aD. Once the message begins traveling
on express channels, latency increases linearly with slope 1 + a/i. This occurs at distance D = 24

I in the figure. There is a periodic variation in delay around this asymptote due to the number of

local channels being traversed, Dioca = (i + 1)/2 + ((D - i/2 + 1/2) rood i).

The hierarchical express cube has a latency that is logarithmic for short distances and linear for
logdistances. The ltnyof mesgstaeigashort dsacD <ais node limited and

increases logarithmically with distance, TD A- (i - 1) log, DT,. This delay is within a factor of i - I
of the best that can be achieved with radix i switches. Tong distance messages have a latency

Iof TD _ 1+a/i1)T,,. If il a this logdistance ltnyis apoiteytwice thelaec

of a dedicated manhattan wire. In a hierarchical network, the interchange spacing, i, can be
made small, giving good performance for short distances, without compromising the delay of long

Idistance mesgswhich deed nthe ratio a/il. In aflat network with asnl aaee,1

it is not possible to simultaneously optimize performance for both short and long distances.

I 3.5 Express Channels in Many Dimensions

iA multidimensional epsscube mybe constructed by inserting interchanges into each dimen-

sion separately as shown in Figure 6A. The figure shows pat of a two-dimensional express cube
with i = 4, 1 = 1. Interchanges have been inserted separately into the X and Y dimensions. A

10
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Figure 7: Interchanges allow wire density, speed, and signalling levels to be changed at -. odule U
boundaries.

similar construction can be realized for higher dimensicas and for hierarchical networks. With this
approach interchange pin-count is minimal as each interchange handles only a single dimension. I
Also, the design is easy to package into amodules as the interchanges axe located in regular rows
and columns. This approach has the disadvantage that messages must descend to local channels
to switch dimensions. U
An alternate cnn,truction of a multidimensional express cube is to interleave multidimensional
interchang- s into the array as shown in Figure 6B for i = A, ; = 1. This approach allows messages
on express channels to change dimensions without descending to a local channel. It is particularly I
useful in networks that use adaptive routing [13](14] as it provides alternate paths at each level of
the network. The interleaved construction has the disadvantages of requiring a higher interchange
pincount and being more difficult to package into modules.

3.6 Modularity

The interchanges in an express cube can be used to change wire density, speed, and signalling
levels at module boundaries as shown in Figure 7. Large networks are built from many modules
in a physical hierarchy. A typical hierarchy includes integrated circuits, printed circuit boards,
chassis, and cabinets. Available wire density and bandwidth change significantly between levels
of the hierarchy. For example, a typical integrated circuit has a wire density of 250 wires/mm per
layer while a printed circuit board can handle only 2 wires/mm per layer'. Interchanges placed at
module boundaries as shown in Figure 7 can be used to vary the number and width of express and
local channels. These boundary interchanges may also convert internal module signalling levels
and speeds to levels and speeds more appropriate between modules. Using express channels and
boundary interchanges, the network can be adjusted to saturate the available wiring density even
though this density is not uniform across the packaging hierarchy. To make use of the available
bandwidth, computations running on the network must exploit locality.

6Thls integrated circuit wire density is typical of first-level metal in a lp CMOS process. The printed circuit I
wire density is for a board with 8mil wires and spaces. Both densities assume all area is available for wiring.

I
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I Figure 8: Block diagram of an interchange. Two multiplexors perform switching between inputI and output registers based on a comparison of the high address bits in a message header.
4 Interchange Design

I Figure 8 shows the block diagram of a unidirectional interchange. A bidirectional interchange

includes an identical circuit in the opposite direction. The basic design is similar to that of a
router [15][6](3]. Two input latches hold arriving flits and two output latches hold departing flits.
If additional buffering is desired, any of these latches may be replaced by a FIFO buffer. If a phit
is a different size than a flit, multiplexing and demultiplexing is required between the flit buffers
and the interchange pins. Associated with each output latch is a multiplexor that selects which
input is routed to the latch. Routing decisions are made by comparing the address information
in the head flit(s) of the message to the local address. If the destination lies within the next i

nodes, the local channel is chosen, otherwise the express channel is chosen. If i is a power of two,
interchanges are aligned, and absolute addresses are used in headers, the comparison can be made
by checking all but the flog 2 i least significant bits for equality to the local address.

The interchange state includes presence bits for each register, an input state for each input, and
an output state for each output. The presence bits are used for flit-level flow control. A flit is
allowed to advance only if the presence bit of its destination register is clear (no data present), or

if the register is to be emptied in the same cycle. The input state bits hold the destination port

and status (empty, head, advancing, blocked) of the message currently using each input. The
output state consists of a bit to identify whether the output is busy and a second bit to identify3 whirh input has been granted the output. The combinational logic to maintain Lhese state bits

and control the data path is straightforward.

2
I
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5 Conclusion I

Express cubes are k-ary n-cubes augmented by express channels that provide a short path for non-
local messages. An express cube retains the wire efficiency of a conventional k-ary n-cube while I
providing improved latency and throughput that are limited only by the wire delay and available
wire density. For short distances, a hierarchical express cube has a latency that is within a small

factor of the best that can be achieved with a bounded degree network. For long distances, the
latency can be made arbitrarily close to that of a dedicated manhattan wire. Multiple express

-an b. .z.d to ..ase thro-ghput to the limit of the availalie wit= deuiLy. Th expres
cube combines the low diameter of multistage interconnection networks with the wire efficiency
and ability to exploit locality of a direct network. The result is a network with latency and
throughput that are within a small factor of the physical limit. 3
Express channels are added to a k-ary n-cube by periodically inserting interchanges into each
dimension. No modifications are required to the routers in each processing node; express channels
can be added to most existing k-ary n-cube networks. Interchanges also allow wire density, speed, I
and signalling levels to be changed at module boundaries. An express cube can make use of all
available wire density even if the wire density is non-uniform. This is often required as the wire

density and speed may change significantly between levels of packaging. I
Express cubes achieve their performance at the cost of adding interchanges, increasing the latency
for some short-distance messages, and increasing the bisection width of the network. Each inter-
change adds a component to the system and increases the latency of local messages that cross an
interchange but do not take the express channel by one node delay, (T + T,). Express channels
increase the wire bisection by using available unused wiring capacity. In parts of the network that

are already wire-limited the express and local channels can be combined as shown in Figure 7.

As the performance of interconnection networks approaches the limits of the underlying wiring

media their range of application increases. These networks can go beyond exchanging messages I
between the nodes of concurrent computers to serving as a general intercortnecLion media for
digital electronic systems. For distances larger than D' = ailogi a, the delay of a hierarchical

express cube network is within a factor of three of that of a dedicated wire. The network may
provide better performance than the wire because it is able to share its wiring resources among
many paths in the network while a dedicated wire serves only a single source and destination.

For distances smaller than D', dedicated wiring offers a significant latency advantage at the cost
of eliminating resource sharing. I
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Abstract

This paper explores priority arbitration schemes that employ busses to arbitrate I
among n modules in a digital system. We focus on distributed mechanisms that
employ m busses, for lg n < m < n, and use asynchronous combinational arbitration
logic. A widely used distributed asynchronous mechanism is the binary arbitration n
scheme, which with m = Ig n busses arbitrates in t = ig n units of time. We present
a new asynchronous scheme - binomial arbitration - that by using m = Ig n + 1
busses reduces the arbitration time to t = 1 lgn. Extending this result, we present I
the generalized binomial arbitration scheme that achieves a bus-time tradeoff of the
form m = E(tn'/ t ) between the number of arbitration busses m and the arbitration
time t (in units of bus-settling delay), for values of 1 < t < lgn and lgn < m < n.
Our schemes are based on a novel analysis of data-dependent delays and generalize
the two known schemes: linear arbitration, which with m = n busses achieves t = I
time, and binary arbitration, which with m = Ig n busses achieves t = Ig n time. Most
importantly, our schemes can be adopted with no changes to existing hardware and
protocols; they merely involve selecting a good set of priority arbitration codewords. 3
Keywords: arbitration, arbitration priorities, asynchronous arbitration, binary ar-
bitration, binomial arbitration, busses, bus-settling delay, combinational logic, data-
dependent delays, generalized binomial arbitration, linear arbitration, open-collector U
busses, priority arbitration, resource tradeoff, wired-OR.
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1 Introduction

In many electronic systems there are situations where several modules wish to use a com-
mon resource simultaneously. Examples include microprocessor systems where a decision is
required concerning which of several interrupts to service first, multiprocessor environments
where several processors wish to use some device concurrently, and data communication
networks with shared media. To resolve conflicts, an arbitration mechanism is required
that grants the resource to one module at a time.

Numerous arbitration mechanisms have been developed, including daisy chains. priority

circ:it. polling, token passing, and carrier sense protocols. to name a few (see [5. 6. 10.
14. 18. 19, 22. 261). In this paper we focus on distributed priority arbitration mechanisms.
where contention is resolved using predetermined module priorities and the arbitration
process is carried out in a distributed manner at all the system modules. I1 many modern
systems, and especially in multiprocessor environments and data communication networks.3 distributed priority arbitration is the preferred mechanism.

Manv distributed arbitration mechanisms employ a collection of arbitration busses to
implement priority arbitration. To this end, each module is assigned a unique arbitration
priority, which is an encoding of its name. An arbitration protocol determines the logic
values that a module applies to the busses, based on the module's arbitration priority
and on logic values on other busses. After some delay, the settled logic values on the
busses uniquely identify the contending module with the highest priority. In particular.
the asynchronous binary arbitration scheme, developed by Taub [23], gained popularity
and is used in many modern bus systems, such as Futurebus [7, 253, M3-bus [9]. S-100
bus [13, 24]. Multibus-lI [14], Fastbus [15], and Nubus [28]. Other priority arbitration
mechanisms that employ busses are described in [5, 6, 10. 12, 17, 18, 19, 22, 26].

The asynchronous binary arbitration scheme arbitrates among n modules in t = Ig n
units of time. using rn = Ig n open-collector (wired-OR) arbitration busses.' The technol-
ogy of open-collector busses is such that the default logic value on a bus is 0, unless at least
one module applies a 1 to it, in which case it becomes a 1. Open-collector busses, thus, OR
together the logic values applied to them, with some time delay called bus-settling delay.3 In asynchronous binary arbitration, each module is assigned a unique (lg n)-bit arbitration
priority. When arbitration begins, competing modules apply their arbitration priorities to
the m = Ig n busses, each bit on a separate bus; the result being the bitwise OR of their ar-

I bitration priorities. As arbitration progresses, each competing module monitors the busses
and disables its drivers according to the following rule: if the module is applying a 0 (that
is, not applying a 1) to a particular bus but detects that the bus is carrying a 1 (applied by
some other module), it ceases to apply all its bits of lower significance. Disabled bits are
re-enabled should the condition cease to hold. The effect of this rule is that the arbitration
proceeds in Ig n stages from the most significant bit to the least significant bit. Each stage
consists of resolving another bit of the highest competing binary priority, which leads to a
worst-case arbitration time of t = Ig n (in units of bus-settling delay).

3'Throughout this paper we count only arbitration busses that are used for encoding the priorities.
Several additional control busses are used by all schemes and are therefore not counted.

*2
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Stage 1 Stage 2 Stage 3 Stage 4
C2 cs C c C,0 OR c 2 CI C,  I Co OR C, C c Co OR c 2 c S C9 CO OR

Bus b, 0 0 1 1 1 0 0 1 1 1 a 0 1 1 1 0 0 1 1 1

Busb, o 1 o 0 1 o 1 0 0 0 1 0 0 1 0 o

Bus b, 1 0 0 1 1 1 0 F0 0 1 1 1 0 0 1 1

Bus b 0 0 1 1 0 1 0l1 1 o o I 1 o 1 0 0

Figure 1: Asynchronous binary arbitration process with 4 busses. The competing modules are
c,, c . c9 , and clo, with corresponding arbitration priorities 0010, 0101, 1001, and 1010. Bits in

shaded regions are not applied to the busses. The process takes 4 stages. £
For example. consider a system of n = 16 modules that uses m = Ig 16 = 4 arbitration

busses, with the 16 arbitration priorities consisting of all the 4-bit codewords {0000, 0001.

0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010. 1011. 1100, 1101. 1110, 1111}.

Figure I outlines an asynchronous binary arbitration process among four such modules c2.

c5. c9. anJ c10 , with corresponding arbitration priorities 0010, 0101, 1001, and 1010. The

arbitration process begins by bitwise ORing the four arbitration priorities. After one unit

of bus-settling delay (stage 1), bus b3 settles to the value 1, where it will remain for the

duration of the arbitration. By the above rule, each of modules c2 and c5 disables its last

three bits. In the meantime, however, each of modules c9 and c10 disables its last two bits.

because of the 1 on bus b2 . At the end of stage 2, bus b2 settles to the value 0, where it will

remain for the rest of the process. As a result, modules c9 and c10 now re-enable their low

order bits (stage 3), which results in bus b, settling to a 1 at the end of stage 3. Finally, in

stage 4. module c9 ceases to apply its last bit, because of the l it detects on bus bl, which 3
results in bus b0 settling to a 0 at the end of stage 4. This arbitration process required

t = Ig 16 = 4 stages to complete.

In this paper we show that the asynchronous binary arbitration scheme can in fact

be improved. We introduce the new asynchronous binomial arbitration scheme, that uses

one more arbitration bus in addition to the lg n busses of binary arbitration, but, most

surprisingly, reduces the arbitration time to 1 Ig n. In asynchronous binomial arbitration.

we use (Ig n + 1)-bit codewords as arbitration priorities and follow the same arbitration

protocol of asynchronous binary arbitration. Our binomial arbitration scheme guarantees

fast arbitration by employing certain codewords that exhibit small data-dependent delays

during arbitration processes. For example, by using the following set of 5-bit codewords

{00000, 00001, 00010, 00011, 00100, 00110, 00111, 01000, 01100, 01110, 01111, 10000,

11000, 11100, 11110, 11111} as arbitration priorities, we can arbitrate among 16 modules

using 5 busses in at most 2 stages. Figure 2 outlines an asynchronous binomial arbitration

process among four such modules cl, c6, c1l, and c12, with corresponding arbitration priori-

ties 00001. 00111, 10000, and 11000 from the above set, that completes in 2 stages. It turns

out that for any subset of the above 16 codewords, the corresponding arbitration process

takes at most 2 stages. In Section 3, we show how to design a good set of codewords for

general values of n by using binomial codes as arbitration priorities

3 I



Stage 1 Stage 2

CB C ., C, 2 OR c c 6 C1 ct2 OR

Bus b4  0 0 1 1 1 0 0 1 1 1

Bus b2  0 1 0 0 1 0 1 0 0 0

Bus b, 0 1 0 0 1 0 1 [ 0

* Bus bo 1 1 1 0 0 1 0 0

Figure 2: Asynchronous binomial arbitration process with 5 busses. The competing modules
are c, c6 , cl. and c12, with corresponding arbitration priorities 00001, 00111. 10000, and 11000.
Bits in shaded regions are not applied to the busses. The process takes 2 stages.

SThe remainder of this paper explores priority arbitration schemes that employ busses to
arbitrate among n modules. In Section 2 we discuss priority arbitration and formally define
the asynchronous model of priority arbitration with busses. Section 3 describes the two
known asynchronous schemes: linear arbitration and binary arbitration, and presents our
new asynchronous binomial arbitration scheme, which with m = lg n + 1 busses arbitrates
in t = 1 lgn units of time. In Section 4 we extend binomial arbitration and present the
generalized binomial arbitration scheme that achieves a spectrum of bus-time tradeoff of
the form m = ®(tnl/t), between the number of arbitration busses m and the arbitration
time t, for values of 1 < t < Ig n and Ig n _< m < n. The established bus-time tradeoff is of
great practical interest, enabling system designers to achieve a desirable balance between
amount of hardware and speed. We present a variety of extensions to the results of this5 paper in Section 5.

*2 Asynchronous Priority Arbitration with Busses

In this section we discuss priority arbitration and formally define the asynchronous model
of priority arbitration with busses. The definitions in this section model typical implemen-
tations of asynchronous priority arbitration mechanisms that employ busses.3Arbitration is the process of sele( ting one module from a set of contending modules. In
asynchronous priority arbitration with busses, each module is assigned a unique arbitration
priority - an encoding of its name - which is used in determining logic values to apply
to he busses during arbitration. An arbitration protocol determines the logic values that
a competing module applies to the busses based on the module's arbitration priority and
potentially also on logic values on other busses. The beginning of an arbitration process
is identified by a system-wide signal, usually called REQUEST or ARBITRATE. The
resolution of an arbitration process is the collection of settled logic values on the busses at
the end of the process, which should uniquely identify the competing module having the
highest arbitration priority.

*4



I
Throughout this paper we use the following notations and assumptions. The set C

{ c , ... c,_1 } denotes the n system modules (chips), which we assume are indexed
in increasing order of priority. The m open-collector (wired-OR) arbitration busses are
,tenoted by B = {bo, b1 ..... b,_1}, where the busses are indexed in increasing order of
significance (to be elaborated later). The set P = {pop, ..... p,-} consists of n distinct
arbitration priorities, with p, being the arbitration priority of module c,. Arbitration
priorities are only a convenient mechanism of encoding the modules' names, and in many
asynchronous schemes arbitration priorities are m-bit vectors that competing modules
apply to the rn busses during arbitration. When necessary, we denote the bits of an
arbi priority p by p(0). p(l). . in order of increasing significance. WXe assume
that each module is connected to all busses and can thus read from and potentially write
to any bus. All modules follow the same arbitration protocol in interfacing with the busses
and reaching conclusions concerning the arbitration process. Finally. we assume that only
Competing modules apply logic values to the busses: noncompeting modules do not interfere
with the busses. All our assumptions are standard design practice in many systems.

In asynchronous priority arbitration with busses, we restrict the arbitration process I
to be purely combinational by requiring that the arbitration logic on all the modules
together with the arbitration busses form an acyclic circuit. Using combinational logic with
asvnchron,-us feedback paths may introduce race conditions and metastable states. which
can defer a bitration indefinitely (see [1. 20, 21]). The acyclic nature of the arbitration
logic imposes a partial order on the busses, which can be extended to a linear order. The I
significance of the linear order on the busses is that logic values on higher indexed busses
can be used to determine logic values of lower indexed busses but not vice versa. We
formalize this idea in the following definition of an acyclic arbitration protocol.

Definition 1 Let P be a set of arbitration priorities. An acyclic arbitration protocol of size
in for P is a sequence F = If,-,.. fl, fo) of m functions, f,:• P x {0, 1 1 - {0. 1}
forj = 0.1 ..... m - 1.

In asynchronous priority arbitration with busses, every module has arbitration circuitry I
that implements the same acyclic arbitration protocol, but with the module's arbitration
priority as a parameter. The m arbitration busses are ordered from b_ down to bo, 3
in accordance with the acyclic nature of the circuit. Informally, function fj takes an
arbitration priority p E P and m - j - 1 bit values on the highest m - j - 1 busses b_
through b,+,, and determines the bit value that a competing module c with arbitration I
priority p applies to bus b,, for = . 1. m - 1. An arbitration process among several
contending modules consists of the competing modules applying logic values to the m

busses according to the acyclic arbitration protocol of size m.

Measuring the arbitration time of asynchronous mechanisms is somewhat problematic.
We follow a standard approach taken in many bus systems (see [6. 10, 11. 14. 16, 24, 25]) 3
and measure the arbitration time in units of bus-settling delay. Bus-settling delay, Tb ,, is
the time it takes for a bus to settle to a stable logic value, once its drivers have stabilized.
which includes the delays introduced by the logic gates driving the bus, the bus propagation 5
delay, and any additional time required to resolve transient effects such as the wired-OR

5I
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4'1btch. In effect. we model an open-collector bus as an OR gate with delay Tb,. the time
It takes for the output of the gate to stabilize on a valid logic value, once its inputs have
reached their final values. An arbitration process is modeled as a sequence of stages. each

Th., time, and the arbitration time is defined as the number of stages it takes
a:I a iisses stabilize. This approach models the situation in many bus systems rather

,iccirativ. i More discussion of measuring the arbitration time in units of bus-settling
i h eferred lint il Section 5.)

We next formally define the notion of an arbitration process of an acvclic arbitration
,rotocol on a set of competing arbitration priorities. We characterize the arbitration

process by the collection of the logic values on the m busses at the end of each computation
-taLe. We use r:,'] to denote the logic value on bus b, at the end of the Ith computation
Stage' for I = 0. .. rn - I and I = 0. 1. ... Without loss of generality, we assume that
an arbitration process begins with all busses being in logic value 0.

Definition 2 Let P be a set of arbitration priorities. F be an acvclic arbitration protocol
of size m for P. and Q c P be a set of competing arbitration priorities. The arbitration
proc ss of F on Q is the successive evaluation of

= ~ V ..... v,,[])

for i--j0. 1.. ... - I and I = 0.1[ .. We sa that the arbitration process takes t stages
if t > 0 is the smallest integer for which c [t] = v,[t + 1], for j = 0.1. m - 1. The
r5csobtion of the arbitration process is the sequence of values (u'_1 [t) ...... Vt tot

Definition 2 characterizes an arbitration process as a successive application of the
acvciic arbitration protocol F to the set of competing arbitration priorities Q and the
current state of the m busses. The arbitration process terminates when no more changes
in the state of the busses occur, at which point a resolution is reached. It is relatively easy
to verify that any arbitration process of an acyclic arbitration protocol F of size m takes
at most rn stages. This is the case because at each cc.nputation stage of an arbitration

Sprocess. at least one more bus stabilizes on its final value.

A better upper bound for the number of stages taken by arbitration processes is given
by the depth of the acyclic arbitration protocol. As discussed above, the acyclic nature
,jf the arbitration logic imposes a partial order on the busses. We can therefore statically
partition the m busses into d levels, such that the computation for a bus in a certain
level only uses the ,alues of busses in previous levels. More formally, given an acyclic
arbit,-.tion protocol F of size m, we simultaneously partition the m functions of F into d
nonempty disjoint sets F0 , F ..... Fd4-, and the m busses of B into d corresponding sets
A. Bi, ... , Bi-,, with f, E Fh if and only if bj E Bh, for 0 < j < m- 1, and 0 < h < d- 1.
The partition must have the property that the computation of a function f, E Fh depends
only on the arbitration priorities and on values of busses in sets Bo, Bi . Bh_1 . The3 depth of an acyclic arbitration protocol F of size m is defined as the smallest d. for which
a partition as above exists. The depth of an acyclic arbitration protocol is never greater

* 6
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than its size. The next theorem shows that any acvclic arbitration protocol of depth d 3
reaches a resolution after at most t = d computation stages.

Theorem 1 Let P be a set of arbitration priorntes. F be an acyclic arbztra,'ion protocol
,,fze m for P. and d be the depth of F. Then. for any subset Q c P of competing
'rbJitritiTon priorities, the arbitration process of F on Q takes at most d stages.

Pro'of. By : &iction on d. the deptn of the acvclic arbitration protocol F.

Base case: d = 0. For depth d = 0. there are no arbitration busses and the claim hoHd! •
irmmediatelv for arbitrary Q.
Inductive case: d > 0. Given an acvclic arbitration protocol F = f _ .... fI. f, of
size m and depth d for P. we can partition F =- I d=O, a as above. Without
loss of generality, we assume that the last level consists of the r functions and busses with
indices 0, 1 . r - 1. The first d - 1 levels of F constitute an acvclic arbitration protocoi

h=0 .. fr--i, f') of size m - r and depth d - I for P. By induction. , he
arbitration process of F' on Q takes at most d - 1 stages. That is. for any r < j < 1

and I > d - 1. we have ,[l] = t-,[d - 1I . In addition, according to the acyclic arbitration
protocol F. we also have that for any 0 < i < r - 1 and k > d > 0,

= V P, .....k uk )
V f,(p. vd- . ,[d - l])

pEQ

u d].

because the dth level depends only on busses b_ down to b, and because k - 1 > d-- .
This proves that the arbitration process tLkes at most d stages. U 3

Theorem I shows that the number of stages that an arbitration process takes is bounded
nv the depth of the acyclic arbitration protocol F. This bound represents a standard static
approach in the analysis of delays in digital circuits, nariely, that of counting the number I
,)f gates on the longest path from the inputs to the outputs. In this paper. however, we
introduce and use a novel dynamic approach of bounding the number of stages that an
arbitration process takes by a careful analysis of the data-dependent delays experienced
in the arbitration circuits. In doing so, we exhibit arbitration schemes that guarantee
termination of any arbitration process in a circuit of size and depth m after a fixed number
of ;tages t. for values of 0 < t < m.

To complete the definition of asynchronous priority arbitration schemes. we need to
introduce the notion of an interpretation function. Suppose we have a set of arbitration I
priorities P and an acyclic arbitration protocol F of size m for P. An interpretation

function for P and F is - function WIN :{O, I I P, such that for any Q C P, with
p _ Q being the highest arbitration priority in Q and (v,,,- ..... vi, v0 ) being the resolution I
of the arbitration process of F on Q, we have WIN(v,i,, . V v,) = p. Informally.

WIN interprets the resolution of any arbitration process of F by identifying the highest

competing arbitration priority. We are now ready to define an asynchronous priority
arbirration scheme for n modules. m busses, and t stages.
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Definition 3 .-n a.ynchronous priorty arbitration scheme for n modules, rn busses, andI stages is a triplet A(n.n.t) =P.F. wIN), where

e P is a set of n arbitration priorities:

* F !; an acclic arbitration protocol of size rn for P:

a % iN is an in ta rpr, ta/ion function for P and F:

:j~ij rhat for any Q - P. the arbitration process of F on Q takes at most t stages.

Detinit ion . emphasizes the role of the arbitration priorities, which are just a mechanism
dt) listinguish between different modules. It will become apparent. however, that careful

d ,iesign (of the codewords used as arbitration priorities has a significant impact on the
arbitration time. In the next Section. for example, we demonstrate that by using the set

I ,-f , Ig n -k- 1 'i-bit binomial codes as arbitration priorities, we can ? hieve an arbitration time
f= t lg n.

13 Asynchronous Priority Arbitration Schemes

I In this section we first use our framework to describe two commonly used asynchronous
priority arbitration schemes: linear arbitration, which with rn = n busses arbitrates in time
r = 1, and binary arb'tration, which with m = Ign busses arbitrates in time t = lgn. We
rhen present our new as nchronous scheme, binomial arbitration, wbich with m = Ig n - 1
)isses arbitrates in time t = Ig n.

The Asynchronous Linear Arbitration Scheme

I I'lis scheme uses m = n busses and arbitrates among n modules in t = I stages. To

arbitrate. contending module c, applies a 1 to bus b,, for 0 < i < n - ,, and does not

interfere with other busses. This translates to module c, having an n-bit arbitration priority

-. such that p(') = 1 ifi j and p(') = 0 otherwise. After t = I units of time, all the

Kusses stabilize on their final values, and the module with a I on the bus with the highest

priority is recognized as the winner. This scheme can also be implemented with tri-state
,Lusses. since at most one module writes to any given bus. The scheme is also known

its decoded arbitration and is used in a number of bus systems and interrupt arbitration

I mechanisms (see [10, 12, 18, 26]).

E"orinallv, we define this scheme as LINEAR(n,n, 1) = (P, F ,wIN), where

£ 0 P = {p, = ..... i 1 0' : for i = 0,1,. -

* F = If,, ._ f,fo), where fj(p,i,,, .... ,+) =p), for =0, 1 .. n- 1.

I wN(I)kI I ) On - k-I = P,-k-l, for 0 < k < n - I and any a E {0,} -k-I.

* 8
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Notice that although tLe size of the acvclic arbitration protocol of LINEAR is m =.,

its depth is only d = 1. which according to Theorem 1 shows that the asynchronous linear
arbitration scheme takes at most t = 1 stages to arbitrate. I
The Asynchronous Binary Arbitration Scheme

Fhis scheme uses rn = '1g n7 busses and arbitrates among n modules in t = rig nl stages. I
Thie arbitration priority p, of module c, is the binary repre eii, , aun of i. for 0 < i < r - i.
To arbitrate, contending module c drives its binary priority p onto the m busses, from
p. " - 1 the most significant bit of p) onto bus b,_., down to pio) (the least significant bit I
ot p i onto bus bg: the result being the bitwise OR of the binary priorities of the competing

'1:1ules. During arbitration, each competing module c monitors the busses and disables
itS drivers according to the following rule: let p() be the lth bit of the binary priority p.I
and let r be the binary value observed on bus bt, for 0 < I < m - 1. Then if pt') = 0 and
r: = 1. module c disables all its bits pi() for ) < I. Disabled bits are re-enabled should the
condition cease to hold. After t = Flg nl units of time, all the busses stabilize on their final
values, and the module whose arbitration priority appears on the busses is the winner.
This scheme was developed by Taub [231, and is also known as encoded arbitration fsee 3

I. 1O. 14. 24. 251).

Formally. we define this scheme BINARY(n. Flg n] . ,Ig n]) = (P. F, wiNi) as follows. For
<implicity of notation we use m = Flg n.

* P = {p, = c-n-1 ... e : where emi ...'" is the binary representation of i. for
1 = 0. 1..... n -l} .

SF f,_.. f. fo), where

= J tV (p,,) = 0 A, ul )
0 if v=;2l (+) :fPCm- 1 .... i) = { p~a) otherwise, -

for) =0,1...m- 1.

* WINi ct = a. for any a E {0, 1}. 3
Notice that the size m and the depth d of the acyclic arbitration protocol of BINARY are

Pqual. specifically m = d = [ig n]. This can be verified by noticing that the computation
'or each bus bj, where 0 < j m - 1, takes into account values on busses b1, for < I <
-m - 1. This implies, according to Theorem 1, that the asynchronous binary arbitration
scheme takes at most t = [Ig nl stages to arbitrate. On the other hand, it has been
shown in '2. 10, 11, 24, 25, 27] that there are examples where a binary arbitration process
takes exactly Fig n] stages. These examples consist of arbitrating among bad subsets of
arbitration priorities, where at each stage the binary value of exactly one more bit of
the highest competing binary priority is resolved. Our asynchronous binomial arbitration
-(chenie. presented next, guarantees fast arbitration by employing certain codewords thatI
-xhibit small data-dependent delays.

9
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3The Asynchronous Binomial Arbitration Scheme

This scheme uses m = 'lgr n- n , busses to arbitrate among n modules in t = n g,
stages. This scheme's acvclic arbitration protocol and interpretation function are identical
',j ?ilose of the binary arbitration scheme, and thus the same hardware can be used. The
)rll" difference is that binomial codes are used as arbitration priorities rather than all3e 2" possible in-bit codewords of binary arbitration. Alternatively. with m busses, this
scheme can arbitrate among )m-1 modules in t = [1(r - 1)1 stages. We next describe the

)inomia, cooes and begin by de1ning the interval-number of a binary codeword.

Definition 4 The inter-'al-number of a binary codeword p is the number of intervals of3 ,consecutive l's or 0's that it contains, disregarding leading 0's.

Thus. for example. the interval-number of 001011 is 3. the interval-number of 0000 is
0. and the interval-number of 10101010 is 8. In general. an m-bit binary codeword p with
interva,-number r, has the form p = 0 mc1 mI 0 M2 j1 3 ... 5m r , where 6 ,: {0. 1}: m0 > 0:
m, > 0 for 1< j < r: and Z:' 0 mn = rn. We next define the binomial codes of length m.

Definition 5 The set of binomial codes of length rn, denoted bv D(m). is the set of all
the rn-bit binary codewords that have interval-number at most [1(rn - 1)]

The binomial codes of length m are in fact all the m-bit codewords, that, after deleting
leading 0's have at most i7(n intervals of consecutive I's or 0's. For example. the

binomial codes of length 4 is D(4) = {00. 0001, 0010, 0011, 0100. 0110. 0111. 1000. 1100.
SI ! 10. 1111}. consisting of 11 codewords that have interval-number at most 2. As another

Pxample, the binomial codes that were used in the introduction are D(5) = {00000. 00001.
JiO010. 00011. 00100. 00110, 00111. 01000. 01100, 01110, 01111, 10000, 11000, 11100. 11110.

I 1 Il}. consisting of the 16 codewords of length 5 with interval-number at most 2. For
general values of rn. Corollary 3 in Section 4 shows that there are at least 2 -i binomial
codes of length m. By taking rn = [lgn + 11, this translates to at least 2fi+ 1- > n3 binomial codes, which means that there are enough arbitration priorities for n modules.

Formally, we define this scheme BINOMIAL(n, [lg n + 11, [I Ig ni) = KPF. wIN) as fol-

3 lows. We use m = [lg n + i and t = [I Ig n] for simplicity of notation.

e P = D(m).

I e F = (f, .  .fo), where

=,0 if V,'-i) (p() =0 Avi~l
p r,-i '... t+ ) p (j) otherwise,

3 for j 0, 1. rn- I.

wiN(o) = a, for anyaE {0,1}m .1 1

U
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It remains to show that the asynchronous binomial arbitration scheme indeed arbitrates

among n modules in at most t [ig n] stages. Notice that a standard static analysis

of the arbitration circuitry, as given for example in Theorem 1. does not give the desired
result. ,ince both the size and the depth of the acyclic arbitration protocol F of binomial 3
arbitration are m = d = 'lgn + 11. In Section 4. we use a novel dynamic approach of
analvzing the data-dependent delays experienced in arbitration processes. and prove the
correctness of our scheme as a special case of our generalized binomial arbitration scheme.

4 Generalized Binomial Arbitration I
[n this section we extend the ideas of the asynchronous binomnial arbitration scheme of
Section 3 by presenting the generalized binomial arbitration scheme that with m busses
and in at most t stages. arbitrates among n = 0 ('7) modules. Bv Stirling's approxi-_ain I
mation. the asymptotic bus-time tradeoff of the generalized binomial arbitration scheme
is approximatelv m = itn/ t . This bus-time tradeoff is of great practical interest, enabling
system designers to achieve a desirable balance between amount of hardware and speed.
The performance of the generalized binomial arbitration scheme is based on an analysis of I
data-dependent delays.

We first define the set of generalized binomial codes of length m and diversity r. 3
Definition 6 The set of generalized binomial codes of length m and diversity r. denoted

by G(m. r). is the set of all m-bit binary codewords that have interval-number at mo°t r. 3
Generalized binomial codes serve as arbitration priorities in the generalized binomial

arbitration scheme. The next lemma determines the cardinality of the set of the generalized
binomial codes of length rn and diversity r.

Lemma 2 The set G(m.r) contains F'=o (') distinct codewords. 3
Proof To simplify the counting, we take all the codewords in G(m, r) and append a 0 at

their beginning. This results in a set of (m + 1)-bit words, that begin with a 0 and have at

most r switching points from a consecutive interval of O's to a consecutive interval of l's

and vice versa. The number of such words is F'= (), since there are exactly that many

possibilities of choosing at most r switching points out of m possible positions. U

Corollary 3 There are at least 2" binomial codes of length m.

Proof. By our notation, the set of binomial codes of length m, D(m), is defined by
D(m) = G(m. 1(r - 1)1). According to Lemma 2, we haveI

(-1 ) A t m w

JD(m)J = E I=011 I

I
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a half of all the m + 1 binomial coefficients. The partial sum is therefore at least a half of
the fuil sum, which is 2'. We therefore conclude that D(m)j > -" --I
The Asynchronous Generalized Binomial Arbitration Scheme

I This scheme uses m busses and arbitrates in at most t stages, for t < m. With the m
and t parameters determined, this scheme can arbitrate among at most n = F'=,n (

modules. The acyclic arbitration protocol and the interpretation function of this scheme
are identical to those of the binary arbitration scheme of Section 3, and thus the same
hardware can be used. The only difference is that generalized binomial codes from G( m.t i3 are used as arbitration priorities.

Formally, we define this scheme GENERALIZED-BINOMIAL(n, m. t) = (P, F, WIN), for3-- =o () as follows.

* P=G(m.t).

I g F = (f- 1, ..... fi, fo), where

V , v D if (p(') = 0 A u = 1

fj(P'- V .. r-+) = { otherwise

forj =0,1.rn-i.

0 WIN(a) = a, for a E {0, 1}'.

I The idea behind generalized binomial arbitration is that the interval-number of the
highest competing arbitration priority bounds the number of arbitration stages. In binary3 arbitration, where all the 2 ' m-bit codewords are used, arbitration processes can take as
many as rn stages, where at each stage one more bit of the highest competi.g arbitration
priority is resolved. For generalized binomial arbitration, however, we select codewords
that have at most t intervals of consecutive 1's or O's. The following theorem uses data-
dependent analysis to argue that any arbitration process takes at most r stages, where r
is the interval-number of the highest competing arbitration priority, by showing that at
each stage the arbitration process resolves at least one more interval of consecutive bits.

Theorem 4 Consider a generalized binomial arbitration process on m busses. Let Q be
the set of competing arbitration priorities, p be the highest arbitration priority in Q, and
r be the interval-number of p. Then after s stages, for any s > r, bus b, carries the logic

I alue ph), for 0 <J < m -I.

Proof. We prove the theorem by induction on r for arbitrary values of m. We use the
notation v, [k] to denote the logic value on bus b, at the end of stage k, forj = 0, 1. - I
and k = 0,1.....

I12
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Base case: r = 0. The codeword p consists of m consecutive O's, that is, p(J) = 0 for 3
j = 0. 1 .... m - 1. Since p is the highest arbitration priority in Q, then any q E Q must

also have q(]) = 0 for j = 0. 1. m - 1. By our assumption that all the m busses are

initially in logic value 0. and since according to the acyclic arbitration protocol no module

ever applies a 1 to any of these busses, the rn busses remain in logic value 0 forever. In

other words. after s stages, for any s > r = 0, we have v,[s] = vj[0] = 0 = pW), for

0. 1 ..... m - 1. which proves the claim.

Inductive case: r > 0. The codeword p has m bits and interval-number r. and is thus
of the formp= p 0'0m 21'n3 ''6n'. where 6 E {0, 1}; m0 > 0: m > 0 for I <j < r:

and Z=. rnj m. We first concentrate on the first r - 1 intervals of p. and define the

;et R of reduced codewords of length rin = m - m,= m m. by ignoring the last m.

bits of the codewords of Q. It is easy to verify that P, the reduced version of p, is the I
-Iighest codeword in R. because we discarded the m, least significant bits of codewords in

Q. Furthermore, the interval-number of ,5 is r - 1, since the last interval of p of the form
I

Swas ignored. By applying the claim inductively with rh busses, the set of competing
arbitration priorities R, and the highest arbitration priority P of interval-number r - 1. we

find that after r - 1 stages the most significant rh = m - m. busses stabilize to the bits of

5. That is. for any k > r - 1, we have v[k] = v,[r - 1] = P(./ = p(J), for rn, < j < m - 1.
We now consider the last M busses, b , .. . . bl, bo. There are two cases to consider:

1 The rth interval of p is an interval of n, consecutive l's, that is, p') = I for i =

0. 1 ...... rn, - 1. After k stages, for any k > r - 1, the most significant rn - in, busses

carry the bits of p. and therefore there is no I in the range 0 < I < rn - I. with I

ui[k] = 1 and p(l) = 0. As a result, the module with arbitration priority p applies

all its last m, consecutive l's. Therefore, for any s > r and i = 0. 1 ... m, - 1. we

have ',(s] = v,[r] = 1 = p('), since the busses imlernent a wired-OR in one stage. 3
= 0 The rth interval of p is an interval of m, consecutive O's, that is. p(') = 0 for

= 0. 1. rn, - 1. Since p is the Highest arbitration priority in Q, then for any arbi-

tration priority q E Q, q # p, there must exist an I in the range m, < I < m - 1, with

p(') = 1 and q(') = 0. After k stages, for any k > r - 1, the most significant m - rn,

busses carry the bits of p, and therefore any module with arbitration priority q #: p 3
disables at least its last m, bits. As a result, for any s > r and i = 0, 1 .... m, - 1.

we have v,[s] = v,[r] = 0 = p(0, because the busses implement a wired-OR in one

stage and no module applies a 1 to busses bo through b,,, anymore.

Thus, after s stages, for s > r, the m busses carry the corresponding bits of p. I

The following corollary shows that by taking G(m, t), the generalized binomial codes

of length m and diversity t, as arbitration priorities, we guarantee that any arbitration

process completes in at most t stages.

Corollary 5 Consider GENERALIZED-BINOMIAL(n,m,t), the generalized binomial arbi.

tration scheme. For any subset of arbitration priorities Q C G(m,t), the corresponding

arbitration process takes at most t stages. 1
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Proof. Let p be the highest arbitration priority in Q. Since the interval-number of p is

at most t, Theorem 4 guarantees that the arbitration process on Q, with p as the highest

arbitration priority, takes no more than t stages. UI
The Generalized Binomial Arbitration Tradeoff

I The generalized binomial arbitration scheme achieves a bus-time tradeoff of the form n =
t= (7. which b- Stirling's formula exhibits asymptotic behavior rn = ltn"i t Figure :3

presents this bus-time tradeoff for a system consisting of n = 64 modules. The number of

busses varies from ig n = 6 to n = 64. and the arbitration time is in the range 1 to Ig n = 6

stages. Generalized binomial arbitration reduces to binary arbitration with m = Fig nF = 63 busses, to binomial arbitration with m = Flg n + 11 = 7 busses, and to a modified version

of linear arbitration (see Section .5) with m = n = 64 busses.

I
t A mr~io

6
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3 Figure 3: Bus-time tradeoff of the generalized binomial arbitration scheme for n = 64 modules.

using 6 < m < 64 busses and 1 < t < 6 stages.

3 Figure 3 demonstrates that neither linear arbitration nor binary arbitration efficiently

utilize the resources. For example, increasing the number of busses used in binary arbitra-

tion by one, results in speeding up the arbitration process by a factor of 2. as exhibited

by our binomial arbitration scheme. On the other hand, allowing another time unit over

linear arbitration enables reducing the number of busses from n to approximately v/2n.

Notice, however, that in order to achieve another factor-of-2 improvement in the arbi-

tration time, adding another constant number of busses to the lgn busses is not enough.

Asymptotically, as n grows without bound, we need to use more than (1 + c)lgn busses.

for e > 0.232, in order for the sum (- (), with t = lgn, to be at least n. This

can be verified by Stirling's formula, since when m is greater than lgn but smaller than

1.232 Ig n, and when t = 1 g n < m/4, the sum of the first m/4 binomial coefficients ('7).

I for 0 < I < m/4, does not exceed n. This demonstrates that our binomial arbitration

scheme, which uses lg n + 1 busses, exhibits a most economic balance, much more so than

* 14
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the binary arbitration scheme. Other authors [11] have also discovered that by excluding

certain codewords, the arbitration time of binary arbitration can be reduced. We, however.

give the first general scheme that provides a full spectrum of bus-time tradeoff.

5 Extensions

This section contains some discussion. additional results, and directions of research con-

cerning priority arbitration with busses. 3
Bus Propagation Delay, Settling Time, and Wired-OR Glitch 3
High-speed busses are commonly modeled as electrical transmission lines, where it .akes

some finite amount of time for a signal to propagate through the bus and bring the bus to

a stable logic value. In addition. there are the response time of logic gates and the effect of

the wired-OR glitch that need to be considered. In particular. the effect of the wired-OR

glitch on bus-settling time and the use of special integration logic at module receivers i,

reduce this effect (see [3, 8, 16, 25)). seem to support our model.

Some authors carry out a more elaborate analysis of high speed busses (see [2. 8.

23. 24, 2.5]). which takes into account the distances between modules on the bus and

imposes certain assumptions on the arbitration priorities. In [24, 25]. for example. Taub

assumes geographical ordering of module priorities and equal distances Letween modules

on a backplane bus. Counterexamples to Taub's analysis, where these requirements are

not met. have been found [2, 27]. Our model, on the other hand, is applicable to a wider

c!asses of systems, such as data communication broadcast channels and bus systems were

priorities and module locations are not predetermined and fixed.

The Asynchronous k-ary Arbitration Scheme I
The linear arbitration and binary arbitration schemes of Section 3 use n-ary and binary

representations, respectively, of module priorities. We can also use radix-k representation

of module priorities, for other values of k, to arbitrate among n = kt modules in t units

of time, using m = tk busses. We sketch the asynchronous k-ary arbitration scheme here

due to its simplicity and because it generalizes the linear and binary arbitration schemes

rather straightforwardly. This scheme exhibits a bus-time tradeoff of the form m = tn' I .

which is a factor of e worse than our generalized binomial arbitration scheme. 3
Asynchronous k-ary arbitration, for 2 < k < n, can be described as follows. Each

module is assigned a unique k-ary arbitration priority consisting of t radix-k digits. We

divide the m = tk busses into t disjoint groups, each consisting of k busses. During

arbitration, competing module c applies the t radix-k digits of its arbitration priority p to

the t groups of busses, using linear encoding of its digits on each group of k busses. As

arbitration progresses, competing module c monitors the t groups of busses and disables

its drivers according to the following rule: let p(') be the Ith radix-k digit of p and di be the

153
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highest index of a bus in the Ith group of busses that carries a 1. Then if pil) < dl, module
c disables all its digits p(J) for ) < 1. Disabled digits are re-enabled should the condition
cease to hold. Arbitration proceeds in t stages. each of which consists of resolving the
value of another radix-k digit of the highest competing k-arv arbitration priority.

3mModified Linear Arbitration

.\ Modified version of linear arbitration, which uses the same acyclic arbitration protocol of
binary arbitration, achieves the same bus-time tradeoff as linear arbitration. This version
is the generalized binomial arbitration scheme with m = n busses and t = 1 time. where the
arbitration priority of module c, is pi = 0 n

- '-i 1'+, for i = 0. 1 ..... n - . This observation
poses an interesting question regarding the universality of the acvclic arbitration protocol
of binary arbitration.

I Lower Bound for Asynchronous Priority Arbitration

The asynchronous 5 eneralized binomial arbitration scheme achieves a bus-time tradeoff of
the form n = Z=0 ('), where n is the number of modules. m is the number of busses. and
t is the arbitration time. We conjecture that this tradeoff is optimal for our asynchronous
priority arbitration model, in that no more than n = = (7) modules that can be
arbitrated with m busses in at most t stages.

ISynchronous Priority Arbitration Schemes

In this paper we discussed the asynchronous model of priority arbitration with busses and
presented several asynchronous schemes. Considering synchronous priority arbitration
s(heme that use clocked arbitration logic, we can show that a synchronous version of k-arv
arbitration achieves a bus-time tradeoff of the form m = ni/t and that this tradeoff is
,optimal in a related -ynchronous model of arbitration. We can also demonstrate how to
Combine asynchronous combinational schemes with synchronous clocked schemes to achieve3 a wide spectrum of bus-time tradeoff.

Resource Tradeoffs

Resouice tradeoffs of the form m = E(tnl/t), based on multiway trees and the special class3 of binomial trees, are discussed in [4] for a variety of problems such as parallel sorting
algorithms, searching algorithms, and VLSI layouts. Asynchronous priority arbitration
with busses can in fact be considered as a selection process on trees. Asynchronous k-ary3arbitration corresponds to a selection process on regular trees of branching factor k, while
asynchronous generalized binomial arbitratiun corresponds to a selection process on the
more economical "modified binomial trees" of [4].
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I Technologies for Low Latency Interconnection Switches

5 Thomas F. Knight, Jr.
M.I.T. Artificial Intelligence Laboratory

I Abstract

This paper presents an engineering design for a low latency high bandkidth interconnec-
uon netork which wdl form the switching substrate for a multi-model parallel process-
ing system. The performance is enhanced with a variety of approaches covenng inter-
connection protocols, routing, fault tolerance, advanced packaging, and electrical inter-
connection techniques. The synergistic application of these technologies leads to a high
performance design.

I
Mot ation remote processors ,auy ss;. In shared memory systemsIButerily r; lfisuw 851, the latency of the communication net-
A key performance factor in large scale parallel computer work affects the average memory reference time. Even the
systems is the latency in processor communications. addition of shared memory caches [SCi, Agvr'2 8. Is:a, R'

jg, considers a program with available parallelism to large scale parallel shared memory systems simpiv
p. running on a multiprocessor of size n, with a communi- moves this latency from occurring once every meMorrF
cations latency 1. measured in terms of mtinuction execu- cycle to once every cache miss time. Even in SLvD atrhi-
uon times. He establishes that there is a speedup linear in tectures such as the connection machine Tis 351, the longn if ni << p, but that this speedup approaches an asymp- latency for communications is a significant bottleneck. re-touc bound of p,1 when ni >> p. suiting in programmers avoiding its use when possible.

Our parallel programming model and algorithm design can Several recent architectures supporting particular program-
influence the available parallelism, or the average length of ming styles drastically lower the latency of communica-
independently scheduled instruction sequences(l], but the tions to achieve higher performance. The Ametek hyper-
latency Jf the communication network remains one of the cube architecture n-,etekl6), for example, achieves micro-
fundamental charactenstics of the hardware architecture. second latencies for interprocessor communication as com-

pared to the hundreds of microseconds for first generation
In message passing models, the interprocesor communica- hypercube processors such as the onginal Caltech de-
tion latency appears as a delay in receiving messages from sign[Seuz 85l. Similarly, the Masspar architecture dramati-

cally reduces the latency for large scale SLMD communica-
[11 In the presence of oo& blocks of length qwhich cma be exe- os l[Crondasi l compared to the connection machine.

cuted independendy without interprocessor communication.
Dertouzos shows that the relationship is modified by subti- Alewife
viting pq for the available parallelism p, making the speedup~less dpenden on the latency.

s dAt MIT, Anant Agarwal and ! are designing an architecture
called Alewife which has as an explicit goal the support of
a wide variety of parallel programming models. As such, it
provides hardware support for a variety of programming
styles, irluding several types of shared memory, message
passing, and data level parallelism. To achieve this broad
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r-argo2 Dl mod~e. r-, i~e n exre.:- ow, ate-<. message, the commc n;cat.r> pat -_ _

,ommnicators mehansm Ve are using "s eta'ed estabhished s ele-crc:ai, reer , a - - -
es.-n as a test-bed for the broader problem ;f AeigC ng and Dpcnal ,a flow frm The re.:per- "e .:'

eIYteme,' Large. scalable paralel machires xh,:h are for any rea-,on, te athe mpted ,?rm.- r-'
ne.5, .r"e,r programming si- Ie .s We re- s.lr',b .t .f :rte er>Aer :.: re' .:.L -. r-F.c2 '.:

7he . .i-_" :e>. :ons;sts cf 2re mjor comp-er.c L The abi:o. of he rener io reT, faed :orr.,r .:
li ,e .Irsl -,mI:--r.(:[ 's a simple proc,ses.r charac nzed by leads to important simi,flcau,.s in he rouLne.-.:
:as ,:onicxi s',,.',hm ast message dspatching, and used in the comm.niuaeon sin"- le
support for data t--ping. The second is a cache and buffer or flow control the messages being .o o .r
:nte rrc.-essor communications controller capable of element. Instead, the element. :f it congtted. .s re e
supporung .oherent memory access in the absence of a discard awk,.ardl,, tmed messages. Simila.r!,,, fal..s -t I
Inie ~shared bus. Finally, the design reies on a fast, routing elements or he wiring eteei Them,

-::-c:e'.t ccmmuncat,n netwcrk. called Tansit handled by simply derectng The faIe: ..i-
attempt using checksurn.ng techniques ar .'

7he modjlants of this design pfovides an opprtunity to damaged data. The toal failure of rou!ng -c7 : .. r
p-or- rcns of the machine as a substrate or other interconnect is handled by re un a , - rt. r . " . . ..

architec.tures In particular.4,e are carefully defining the descnbed below. Explicit ackno!edZ "-mhi .ecw '.i

.ntertrace bteen each of the components of the slow the nekork, but is required e2entcal, . -
architecture to allo, one portion to be replaced by different networks which accepc respons~bin, for de>.
or higher performance equialens. Transit suppxts a messages. Here, the reply data prom a memor reqe . -r
carefull, defined interface to the cache controller, and the example can be combined .iW We ack-, cdgr.t.
.ache ontro-ller presents bth a uniform shar'd memor,
model and an explicit processo to processor communica- Each port of he Transit net'work consisLi of a nine bit ,4 is
uon mo el to the processors. path, synchronously clocked every 10 nanoseconds One

bit is a framing bit, used to disunguish control bytes frmrn

Transit Target Specifications data bytes, and the remaining eight bits are used to tans:,
one byte ofr muting information, or data. Figire I sh,--s

The Transit net, ork provides uniform communications the details of the inter-chip timing of a simple

beteen 256 processor'memory clusters. Latency for a In the idle state, the sender transmits a zero fram,.- :
remote memon , reference is 280 nanoseconds, and peak each clock cycle. At the start of a message, one te
bandw., idth is 100 megabyte.secondiport The remainder muting data and a framing bit of one are sert ,nto -hIe .r.,
of this paper concerns the technology with which this port. Each clock cycle thereafter, a data bvte .s rar- ..
network is construtcted, and the impact these techniques into the input port. This forward stream .,f b\te.s ,
have on lowenng he latency of communications. We will prpelined through each stage of the iterconnec-, r
bnefly consider more advanced interconnection techniques network, and eventually reaches the desunatcn
and address the issue of scaling the design to larger
numbers of processors. Because of spae- limitations, most When all of the sender data has been rransmtd .a I
of the discussion will consist of a description of the distinguished byte, the turn byte, (all one's wkith a zero
techniques Transit uses to achieve high performance, with framing bit) is transmitted. This is a signal tn reverse The
little discussion of alternative possible designs. In many data flow in the network. On receipt of the turn byte, each
cases viable alternatives exist, but the space of possible stage of the network starts pipelining data back to the
designs is so large that it is impractical in a short paper to original sender. When the turn byte reaches the
discuss alternatives for every decision. destination, a complete reverse path has been set up

allowing data to flow from destination to he sender The
Communication Protocols destination transmits an acknowledgment, followed by any

number of data bytes. The framing bit in the relerse

Transit uses a connection based source-responsible routing direction is used to signal the completion of data transfer I
protocol. The sending controller transmits a routing header Status information is available to the sender as a side effect
and optional data forward into the Transit network, while of this sequence. Because of pipelining, a D stage sxitch
retaining a copy of the message. The network makes a best has 2D clock peods of delay following We sender
effort to establish a communication lr bteen the source transmission of the turn byte and prior to the arrival of ,he
and destination port. After ransmitting the forward acknowledgment. During this penod, each stage of the

U
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Unblocked Data Transfer Timing

I Bytes dr ver" !owa'd .e n .t 'Dort R Routing By'e

,2! Bytes V3ve, by the npQ! oort F Forwa,. Data Bye
3i ByIes ,riven by :he o.t2ut :ort T Tjrn Byte
4. Bytes 1' ve' ,Oa'd 'e o 'p t po ,* S Statjs Byte

C Chcks 'i Bite
B BacKwarc Data Byte

time - Previous Router
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3 This router
Byte: R C P. F F FFF: OT0

i -- ...ro 1 i I i 0 0 0 0 0

II

I!(4) BYvte B B B B B 0

I Next router

Figure 1

I interconnection switch t-ansats a pair of status bytes back interchangeable, and the eight outut ports are pared in
t Lhe sender, indicating which (if any) of the output ports four groups of two ports each. An input message is muted
were assigned to the connectioi leaving this switch stage, to one of the two available output ports in the direction
and a checksum for the message at this stage of the switch. specified by two bits of the routing byte. Once this muting
The status information is used by the sender to determine Js performed, the path which is set up will remain assigned
the exact path through ibe switch this message was routed until the connection is dropped. If neither of the two
with, to determine wheire a message wa garbled in trnsit, output ports i the desired output direction is available, the
and to determine at which switch stage a meNsage was message is discarded.
discarded, if it was thrown away.

The wiring of the port from each stage of the switch to the
Interconnection Topology next is arranged so that the data wires are rotated by two

bits. This permutation of the data wires allows the two bit

I The Transit network consists of a four stage, radix four field of the routing byte seen by each of the four stages of

omega network, providing 256 possible destinations. Each the switch to differ, routing the message on al eight bits.

roung element is an eight input port, eight output port The pairing up of output ports in t muting element
switching component. The eight input ports are

I



pro,-ides an .mp)r-art ,ault .olerance feature .f the Jesign

:f both )utput xorts in a given direction are avai!able Ahen
a message -s to be routed, a pseudo-rndlom 7umher 11

generaior :s used to arbitraril. ch(-se betrein uhem This ..
issares :t -he pach taken through the switch on an atempt - I

:t, r i .nug I mesa..e after failure 4ilt. 'vith high -
probadrit, u.ake i different path than the irst t. This
path -ekdunda.rc: allows fault tolerance to be built into the ___

net.,ork at ver. ow overtread. Ideally, the two output "_-__

ports .4hich go in logialv, idenucal direcuons should be

.,ired to physically distinct routing elements to pro,,ide ,. = ,..-.. _

better fault coverage This is possible in all but the final ....
-tage of the switch, where all messages desuned for a
p-,trtu;i.r processor must flow through one routing . 1 7 1 -- -

element. The necessit, to wire this Final stage differently
:s in conflict .ith the desire to wire all stages w th the AR E'*
same permuiaun. for reasons ,vhich -.e describe below Ln- -
the section )n packaging i ng 1  -- 11 |
The choice )f four pairs of output ports as a rouung -
element esizn also has important tmplications for the
ittULIS Success of the rouung process. This issue is
discussed in detal n the se,:ion below on performance. Figure 2

Packaging Issues bottom of the carer board Thus ter-minals of the die are
accessible from top or below, and wires, if necessary, can

The packag'ng of high performance systems has an be simply routed through the carrier with no connection :o
extreme impact on their speed -- to the extent that system the die. The carrier board provides a controlled impedo-,e
level design is often dictated by available packaging environment for signals up unul the bond to the Jie n
technology. The Transit network is packaged using a addition, the carrier provides low inductance po, er and
unique three-dimensional wiring technology which allows ground plane decoupling caprcitance through integral laer
roughly equivalent wiring density in all three dimensions. proximity, as well as locations for mounting explict
The approach consists of usmg conventional printed circuit ceramic bypass capacitors. Through holes are pr,, deJ .n
boards, with a 50 ohm controlled impedance stripline the carer for vercal fluid cooling channels.
structure, for two of the three dimensions. For the third I
d inension of wiring, these boards are layered on top of one Component carriers, together 'ith upper and loer buton
another, as shown in figure 2.

Contact between the boards is provided with button boards m
'Smnotev, i51, a term describing compliant fine wire fuzz
buttons pushed into blank, drilled primed circuit board
material (figure 3). These buttons, formed by compressing I
'5 micron wire into a cylindrical die 20 mils in diameter by

-40 mils high, are used oni staggered, 50 mil centers, to
provide extremely dense connectors between layers of the
packaging. Because of the short distances involved,
impedance mismaich is minimal if care is taken with
ground, ire der, ,ity.

Components are packaged into this structure by mounting
them on carriers also fabricated from standard PC board
materials. A recessed cavity is used to hold the die, which I
is then wire bonded or tab interconnected to the carrier.
The carrier is unlike normal integrated circuit packages in

that its pins are simply flat puds located on both the top and Figure 3 I

I



provides ,,4o dimenis~cns, o f horizontal alignrment. The Providing !lectrical power to the zi-rcucs; ar- , mc-Iholding ra-me. with its 'bution bo&'-I r~s*d carriers, forms a wa.ste heat remain sig-nificant .ssue5 T'he [:' (tf'
:aver in the stcack. Stack-kide printed circuit boaris excellent. low resiscance connectors. ard. ')ue u re

t'iaiiaernate 4uih layers of holding frames and chips, Large number reqluired bet'.4.een boar-Is to .C ±'
7rovid nz a -ompact ene ch-ree dimensional means :or control, exist in abundance tO'o,., a 10, .4 u.u

Ssmall '30x20Ox210 cm) Lfree imenional Path vertically, ber,4een boar s Ho7-nnillv. p~ s
structur'~~'i providedi using integral povverrgound plane sr.cae

within the contro~led impedance boards These planes aisn,I T~~,he Logical stucatre of te Cour stage ra dix four omega poieinc-atlwidcac oe ~pl iei~
network is mapped onto the Lhr-ee-dimensional package by Power is brought into the stack with po,,er. lugs mounted
paclkag,.ng each stage of the touting network in a separate on boards at the center vetclyof the stack .AhichI aver of the stack. Signal flow through th network is thus extend horizontally beyond the normal boundJar-.. DCth

:cgcal~ n heveria dietion, from one layer to the stxck.

nlext. The omega topology, has the valuable property ofIhaving identical wirig patterns between stages of the Heat is removed from the stack usire 7C---
netwocrk ' this property is exploited in the stack by liquid flowing vertically through the stack. The re
'epicaltrng the interconinection structure of each stage stack is normally run immersed in Fluor-c 0. and
multiple times. Ideally, then, the stack consists of a pressurized fluid is pumped into a dist:ributo:n mi..fd .1
structure- alternating a Fixed omega kiring permutation of the top of the stack- This manifold also acts as .one t'-e
signals in the horizontal direction, w4ith laer , of routing pressure plates which apply, ccmpressi'.e Force to mate r.he
e lements. Four such winng, routing element pars complete Large number of button boa-rd contacs The high he-atI he three dimensional stack. Figure 4 shows the wirig capacity per unit volume of 1-iqu~d congrelativ.e to air
pattern f or the hcxnzontal wires in one of the layers of the cooling dictated its use in the high densirv structure'
stLac k. Each line represents a pair of ports: this figure Modest flow rates (2 gal/mi should b-e adequate to cool

shows a the wiigfor a 64 port network. our prototy-pe system.

The vertical signal flow means that inputs to the switch As a result of the aggressiv e packaging used in this design1,
structure are available at the top, and that outputs are the longest wires are approxamately 45 centimeters-.
available at the bottom. Because we wish to use this Modest cost, easily fabr-icated, low die'lectr-c constant, ::C
network as a pro~cessor to processor communication switch, board materials such as Norplex cyanate esters. haa
the iinputs and outputs must be available in physical dielecmnc constant of 3.1. The wire delay of the longestIproxirr.tw' This is solved by routing the network outputs.'- paths in the design is thus approximately 26
back through the stack vertically on additional wiring nanoseconds.
channels. These channels take up little space, since ther is
no horizontal wiring associated ,with them. This composite structure has many advantages oe

conventiona] packages. First since it is three dimensional,
the wire length for a given wuinng density is substantially
smaller than structures otherwise achiev able using twoIdimensional packaging, backcplanes, and cables. Second. it
is easily repairable by disassembly of the stack, -;nce it
involves no soldering or other permanent connections.
Third, though it might seem awkward to debug, simple

boadsca b cosuucedwhich, when added to the stack
betee patiulr lyesallow signals in that layer to be

Electrical Issues

An early decision was to totally abandon the idea of using
multi-drop bus like electrical structures in the design. The
drastic reduction in signal speed and line impedaince due toI capacitive loading of the transmission lines in even
carefully engineered systems argued strongly that point to

Figure 4 point commurucations be used.
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advantage The gnd must be dnrien at mwc: ._,, --

A dom,nan elecatcal leSign S.sue xas how Xo drive the .perhaps every 5-10cm in all axes and 7 .aced as a I
very arge number 23,00C, of terminated signal ',wures i capactave load Since the clock %.aveform is of a .Irz'e
the svitch. A 50 ohm mpe.Lance level is dictated by frequency, we can consider the possibility of res- .- J
pracxicai :re geo-etries, and could 'tot in any ase, he this capac tance jiLh a tuned inductance to reduce :c,:k
-a.ed 1:. .. re than a factor of two. With standarl cos d.stributon poer
,: z-Li i :. - five volts, he parallel terminat on of a
single .,tre .ou.ld dissipate a half wattl We reduce ths Performance
power djssipatrn I- a factor )f T by lowering the signal I
s 'ing to one olt, and b-, series terminating the One of the advantages of the unbuffered st. le of

transmission lines. The series termination allows the communication network :s ease of performance anai,.sis.
impedaice seen by the output driver to be twice the Since the network timing is determined entirely by the
impedance of the lne, but is apphcable only to point-to- pipeline delay, the latency for successful messoces :s easy
pVint a, r-ng to calculate Since the system is memory less eXcep at- .e

sender, the probability of rouung success .'en the
The series Termir.atn resistance is provided within the network can be calculated quite easily. using he .no..u
puilup and pulldovn transistors of the output driver, as techniques described in :K-ng-t s9l.
described in Kng. w. Our current design differs a little
;"rom the :echnque descrbed in that paper in that it uses a A typical message might consist of a remote me-,-r. -ea, I
Jigitall1 controlled DIA like structure to vary the output access. Such a request would send an address fo.1c i-I
transistor resistance The use of resistve pullup and through the Transit network, cycle the remote memcr., and
pulldown devices has important speed implicatons, since return an acknowledgment and the read dta. For 32 bit
the deices need not 'must not be large devices, and hence address and data, the forward message is five btes .ong,
:an be driven far more quickly than corventonal low and the reverse message is five bytes long. A two byte
impedance output driver transistors. Providing the checksum will tLikely be added to these message liengths.
terminating resistors on-chip also has the large advantage although these are indistinguishable from data to the I
of eliminating 23.000 discrete resistors from the stack, and network. The pipeline delay of the network is four clocks,
allows for electrical compensation of both the driver so the remote access is complete m ?7.4-.7+4 = 22 cycles.
impedance and the line impedance against manufactunng By making optimistic assumptions about the succes cc I
variation. checksuming the data- we can overlap a portion ,f the

forward message delivery with the cycling of the remote
The oce v olt logic swing of the output driver is compatible, memory system. As soon as two bytes of address are
in magniude, with the approximately one volt swing of received, we can initiate a RAS cycle on the remote memor,,
ECL loinc families. As a result- the use of small quantities system, and start the memory, cycle in parallel wkith rece:-t
of small scale ECL logic for applications such as clock of the remainder of the address. Similarly, the
buffers and 11O interfacing is practical, using a pair of acknowledgment byte may be sent prior to having access Il I
offset power supplies for the ECLt circuitry. the read data. This gives 60 naroseconds at the remote

processor/memory pair to perform a memory RAs,C AS
One of the difficulties we have encountered is the very low cycle and obtain the data I
efficiency of one volt power supplies. At these voltages,
the voltage drop of a silicon diode (.7 volts) becomes a The probability of successfully routing through the Transit
major source of power supply inefficiency. Synchronously network as a function of input loading is shown in Figures 5
switched MOS power devices used as rectifiers will solve and 6. The input loading is the probability that an ;nput
this problem, but there is as yet no commercial demand for part has a message being sent or received. The best that
this development. As VLSI devices scale to smaller can be achieved without combining approaches is the non-
dimensions, the need ftr high efficiency. low voltage blocking behavior of the crossbar. Figure 5 shows the I
power supplies will become very evident performance of a crossbar network with one output port to

each logical destination. For comparison, the eight stage
We are currently investigating two techniques for clock omega network constructed out of 2 by 2 switch elements,
distribution. The conventional approach is to use multi- and the four stage omega network constructed out of - x -% I
stage clock fanout with equal length and matched delay switch elements are also shown. The Transit network.
transmission lines to each network element for delivery of further limited to a single output port per logical
a utme aligned clock signal. A second approach of treating destination is shown on this same graph. The extra output
the clock signal as a single node, wired in a highly ports between switching elements leads to behavior ver,
interconnected three-dimensional grid may offer some close to the ideal behavior of the crossbar.

I
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im '.ar . n figure 6, ke show the ideal behavior of a large channels, towards a global switching array. Finallv, uLey
i fl-bYXK:r "; R - " crossbar which allows two output arrive at the most global (root) node of the net',work, and,
,or-s per :ogical destnation. Below it we show the from there, may be delivered to any location. The
erncmance of the Transit nerork, again demonstrating narrowwg of the channels as the root is approached allo4s

percmnanrce close to the beha,,ior of a crossbar. this network to scale to very large arrays, at the cost of
Sf olatency, and of limited ability to communicate globally.I The re.,sen for this goox:d performance lies in the choice of

netr-crk element -- particularly in the availability of We can construct fat-tree based routing networks from the
muitiple output paths travelling in a single logical stack structure described above for Transit by adding oneIrec,' ,n The performarce of the network from a additional routing stage per stack. The purpose of this
probabtlistic standpoint could be improved yet more by routing stage is to isolate messages destined for more
constrjctng a switching element with eight inputs and two global stages of the switch from those that may be
:Iusters of four outpuLs each, where each of the four ports delivered locally. The more global messages are routed to
in a JIuster travelled in a logically equivalent direction. the bottom of the stack, where they connect to a set of
The disadvantage of this approach is the doubling of the flexible printed circuit board layers used as cabling
- ..nber of stages in the netrork, since only one bit worth between stacks. The other end of these flexible PC boardIf routing is performed per stage of the network. The cables is routed to the top of another stack, along with the
choice of the element for Transit was dictated by a desire global signals from three additional stacks. Outputs of the
o minimize the pipeline delay of the network while global stack similarly are channeled back to the local
maintaining good probabilistic performance. stacks. This approach of constructing a fat-tree like

Technology Extrapoltstructure from a tree of high performance routing stacks
appears to be an effective way of building networks whichcobn high performance, an ability ttaeadvantage o*o~n ttake avngeof

The approach of constr'ucting large multi-stage omega locality, and scalability to tens of thousands of high
networks becomes infeasible at a point not much larger performance processors.
than the network we ar constructing, due to the
exponential growth of wiring. For processor networks Two alternative electrical techniques for communicating
larger than can be packaged with short wiring, the architect between routing elements appear to be important
(and ultimately the programmer) must face the importance alternatives. One is the approach of Rettberg, Glasser and
of locality in constructing very large parallel machines. Basset [Reabers " for eliminating the reliance on low clock
Perhaps the most elegant approach to acknowledging the skew in the signal paths. Future versions of the Transit
necessity for this locality is the fat-tree (Leuer.oe 851 ap- network will likely require an approach similar to this,
proach. A fat-tree can be thought of as a multi-stage especially if the wiring between stacks is long enough to
omega network where local transactions are successively inpose delays large compared to the anticipated clock rate.
isolated from more global transactions. The more global
transactions are routed, through successively more narrow Another approach which we are devoting some attention to
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